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Abstract: We study the large-time behavior of solutions to the nonlinear exterior problem Lu(t, x) =
κ|u(t, x)|p, (t, x) ∈ (0, ∞) × Dc under the nonhomegeneous Neumann boundary condition
∂u
∂ν (t, x) = λ(x), (t, x) ∈ (0, ∞)× ∂D, where L := i∂t + ∆ is the Schrödinger operator, D = B(0, 1)
is the open unit ball in RN , N ≥ 2, Dc = RN\D, p > 1, κ ∈ C, κ 6= 0, λ ∈ L1(∂D,C) is
a nontrivial complex valued function, and ∂ν is the outward unit normal vector on ∂D, relative
to Dc. Namely, under a certain condition imposed on (κ, λ), we show that if N ≥ 3 and p < pc,
where pc =

N
N−2 , then the considered problem admits no global weak solutions. However, if N = 2,

then for all p > 1, the problem admits no global weak solutions. The proof is based on the test
function method introduced by Mitidieri and Pohozaev, and an adequate choice of the test function.

Keywords: nonlinear Schrödinger equation; exterior domain; nonhomegeneous Neumann
boundary condition; global weak solution

MSC: 35B44; 35B33

1. Introduction

We investigate the nonlinear exterior problem

Lu(t, x) = κ|u(t, x)|p, (t, x) ∈ (0, ∞)× Dc, (1)

where L := i∂t + ∆ is the Schrödinger operator, D = B(0, 1) is the open unit ball in RN , N ≥ 2,
Dc = RN\D, p > 1, and κ ∈ C, κ 6= 0. Problem (1) is studied under the nonhomegeneous Neumann
boundary condition

∂u
∂ν

(t, x) = λ(x), (t, x) ∈ (0, ∞)× ∂D, (2)

where λ ∈ L1(∂D,C) is a nontrivial complex valued function and ∂ν is the outward unit normal vector
on ∂D, relative to Dc. Namely, we derive sufficient conditions so that Equations (1) and (2) admit no
global weak solutions.

We mention below some motivations for studying the considered problem. Let us first fix some
notations. Given a complex number z, the real part of z is denoted by Re z, the imaginary part of z
is denoted by Im z, the conjugate of z is denoyted by z, and the modulus of z is denoted by |z|.
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In the literature, there are many results related to the blow-up of solutions for nonlinear
Schrödinger equations in the whole space RN . Glassey [1] studied the Cauchy problem{

i∂tu = ∆u + |u|p−1u, (t, x) ∈ (0, ∞)×RN ,
u(0, x) = ϕ(x), x ∈ RN .

(3)

Under the assumptions

(i)
∫
RN

(
|∇ϕ|2 − 2

p + 1
|ϕ|p+1

)
dx ≤ 0,

(ii) Im
∫
RN

rϕϕr dx > 0, r = |x|,

(iii) p > 1 +
4
N

,

it was shown that ‖∇u‖2 and ‖u‖∞ blow up in finite time. In [2], Ogawa and Tsutsumi proved that,
if N ≥ 2 and

1 +
4
N

< p < min
{

N + 2
N − 2

, 5
}

,

then, if the initial data ϕ ∈ H1 is radially symmetric and has negative energy, the solution to (3) in
H1 blows up in finite time. For other related woks, see, for example [3–6] and the references therein.
Ikeda and Wakasugi [7] investigated the problem{

i∂tu + ∆u = κ|u|p, (t, x) ∈ (0, ∞)×RN ,
u(0, x) = ϕ(x), x ∈ RN ,

(4)

where κ ∈ C, κ 6= 0 and 1 < p ≤ 1+ 2
N . Under certain assumptions on ϕ, they proved that the L2-norm

of the solution u of (4) blows up in finite time. In [8], Ikeda and Inui extended the results obtained
in [7] to the case 1 < p < 1 + 4

N . For other related results, see, for example [9,10].
We mention that the nonlinearity κ|u|p works differently from the nonlinearity κ|u|p−1u.

Indeed, Ikeda and Wakasugi in [7] showed that κ|u|p does not act as a long range effect such as κ|u|p−1u
(note that the L2-norm of solutions for the equation in (3) conserves for all t ∈ R, see [7]).

On the other hand, it is well known that for many problems, the large-time behavior of solutions
depends on the geometry of the domain, as well as the considered boundary conditions. As an example,
let us consider the semilinear heat equation{

∂tu− ∆u = |u|p, (t, x) ∈ (0, ∞)×RN ,
u(0, x) = u0(x), x ∈ RN .

(5)

It is well known from a famous result of Fujita [11] that the critical exponent of (5) is

pF = 1 +
2
N

, (6)

i.e., if 1 < p < pF and u0 > 0, problem (5) possesses no global positive solutions; if p > pF and u0

is smaller than a small Gaussian, then (5) has global positive solutions. Consider now the same
problem posed in the exterior domain Dc with a Neumann boundary condition on ∂D, i.e.,

∂tu− ∆u = |u|p, (t, x) ∈ (0, ∞)× Dc,
∂u
∂ν (t, x) = λ(x), (t, x) ∈ (0, ∞)× ∂D,
u(0, x) = u0(x), x ∈ Dc.

(7)

In the case λ ≡ 0, it was shown by Levine and Zhang [12] that the critical exponent of problem (7)
is equal to the Fujita critical exponent pF defined by (6). However, if N ≥ 3 and

∫
∂D λ(x) dσ > 0,
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it was proven by Bandle, Levine, and Zhang [13] that the critical exponent of problem (7) jumps
from pF (the critical exponent of (5)) to a bigger number N

N−2 . This shows the influence of the geometry
of the domain and the considered boundary conditions on the critical behavior of solutions to (5).

In [14], Jleli and Samet studied the exterior problem (1) under the nonhomogeneous Dirichlet
boundary condition

u(t, x) = λ(x), (t, x) ∈ (0, ∞)× ∂D (8)

and the initial condition
u(0, x) = ϕ(x), x ∈ Dc. (9)

It was shown that, if 1 < p < N
N−2 (N ≥ 3) and

Re κ · Im
∫

Dc
ϕ(x)H(x) dx < 0, Re κ · Re

∫
∂D

λ(x) dσ < 0

or
Im κ · Re

∫
Dc

ϕ(x)H(x) dx > 0, Im κ · Im
∫

∂D
λ(x) dσ < 0,

where H is a harmonic function, then Equations (1), (8) and (9) admit no global weak solutions.
A natural question is to ask whether the above result still holds if, instead of the nonhomogeneous
Dirichlet boundary condition (8), we consider the nonhomogeneous Neumann boundary condition (2).

In this paper, motivated by the above mentioned facts, we study the exterior problem (1) under
the nonhomogeneous Neumann boundary condition (2). The rest of the paper is organized as follows.
In Section 2, we give the definition of the global weak solutions of (1) and (2), and we prove some
preliminary results. In Section 3, we present and proof our main result.

2. Global Weak Solutions

First, we fix some notations. Let
Q = (0, ∞)× Dc

and
Γ = (0, ∞)× ∂D.

Let

Φ =

{
ϕ ∈ C2

cpt(Q,R+) :
∂ϕ

∂ν

∣∣∣
Γ
= 0

}
,

where C2
cpt(Q,R+) is the space of nonnegative C2 functions compactly supported inQ. Recall that Dc

is closed and Γ ⊂ Q.

Definition 1. A function u ∈ Lp
loc(Q,C) is called a global weak solution to (1) and (2), if

κ
∫
Q
|u|p ϕ dx dt−

∫
Γ

λ(x)ϕ dσ dt = −i
∫
Q

u∂t ϕ dx dt +
∫
Q

u∆ϕ dx dt, (10)

for all ϕ ∈ Φ.

Let
SGL = {u ∈ Lp

loc(Q,C) : u is a global weak solution to (1) and (2)}.

From (10), one observes that

Lemma 1. If u ∈ SGL, then

Re κ ·
∫
Q
|u|p ϕ dx dt− Re

∫
Γ

λ(x)ϕ dσ dt = Im
∫
Q

u∂t ϕ dx dt + Re
∫
Q

u∆ϕ dx dt
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and
Im κ ·

∫
Q
|u|p ϕ dx dt− Im

∫
Γ

λ(x)ϕ dσ dt = −Re
∫
Q

u∂t ϕ dx dt + Im
∫
Q

u∆ϕ dx dt,

for any ϕ ∈ Φ.

Let ψ ∈ C∞(RN) be a function satisfying

0 ≤ ψ ≤ 1; ψ ≡ 1 in D; ψ(x) = 0 if |x| ≥ 2.

Let ξ ∈ C∞(R) be a function satisfying

ξ ≥ 0; ξ 6≡ 0; supp(ξ) ⊂ (0, 1).

For 0 < T < ∞, let
ψT(x) = ψ

( x
T

)τ
, x ∈ Dc

and

ξT(t) = ξ

(
t

Tρ

)τ

, t > 0,

where τ > 2p
p−1 and ρ > 0 are constants. Let

ϕT(t, x) = ξT(t)ψT(x), (t, x) ∈ Q. (11)

It can be easily seen that

Lemma 2. For all 1 < T < ∞,
ϕT ∈ Φ.

It follows from Lemmas 1 and 2 that

Lemma 3. If u ∈ SGL, then

Re κ ·
∫
Q
|u|p ϕT dx dt− Re

∫
Γ

λ(x)ϕT dσ dt = Im
∫
Q

u∂t ϕT dx dt + Re
∫
Q

u∆ϕT dx dt (12)

and

Im κ ·
∫
Q
|u|p ϕT dx dt− Im

∫
Γ

λ(x)ϕT dσ dt = −Re
∫
Q

u∂t ϕT dx dt + Im
∫
Q

u∆ϕT dx dt, (13)

for any 1 < T < ∞.

3. Main Result

In this section, we obtain sufficient conditions for which SGL = ∅. As in [14], the used
technique is based on the test function method introduced by Mitidieri and Pohozaev (see, e.g., [15]).
However, due to the boundary condition (2), the considered test function in our case is different to that
used in [14].

For N ≥ 3, let

pc =
N

N − 2
.

Define the sets Hi, i = 1, 2, by

H1 =

{
(κ, λ) ∈ C\{0} × L1(∂D,C) : Re κ · Re

∫
∂D

λ(x) dσ < 0
}
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and

H2 =

{
(κ, λ) ∈ C\{0} × L1(∂D,C) : Im κ · Im

∫
∂D

λ(x) dσ < 0
}

.

Our main result is the following.

Theorem 1. Let (κ, λ) ∈ H1 ∪ H2.

(i) If N ≥ 3, then
SGL = ∅, for all 1 < p < pc.

(ii) If N = 2, then
SGL = ∅, for all 1 < p < ∞.

Proof. Let (κ, λ) ∈ H1, and suppose that u ∈ SGL. Using (12), for sufficiently large 0 < T < ∞, one has∫
Q |u|

p ϕT dx dt− σ(κ)Re
∫

Γ λ(x)ϕT dσ dt ≤ |σ(κ)|
∫
Q |u||∂t ϕT | dx dt + |σ(κ)|

∫
Q |u||∆ϕT | dx dt, (14)

where σ(κ) = (Re κ)−1. On the other hand, using (11), one obtains∫
Γ

λ(x)ϕT(t, x) dσ dt =
∫
(0,∞)×∂D

λ(x)ξT(t)ψT(x) dσ dt

=
∫
(0,∞)×∂D

λ(x)ξ
(

t
Tρ

)τ

ψ
( x

T

)τ
dσ dt

=

(∫ ∞

0
ξ

(
t

Tρ

)τ

dt
)(∫

∂D
λ(x)ψ

( x
T

)τ
dσ

)
= Tρ

(∫ 1

0
ξ(s)τ ds

)(∫
∂D

λ(x) dσ

)
,

which yields

− σ(κ)Re
∫

Γ
λ(x)ϕT(t, x) dσ dt = C1Tρ, (15)

where

C1 =

(∫ 1

0
ξ(s)τ ds

)(
−σ(κ)Re

∫
∂D

λ(x) dσ

)
.

Since (κ, λ) ∈ H1, one has C1 > 0. It follows from (14) and (15) that

IT + C1Tρ ≤ |σ(κ)|
∫
Q
|u||∂t ϕT | dx dt + |σ(κ)|

∫
Q
|u||∆ϕT | dx dt, (16)

where
IT =

∫
Q
|u|p ϕT dx dt.

Further, by Hölder’s inequality, one obtains

∫
Q
|u||∂t ϕT | dx dt ≤ I

1
p

T

(∫
Q
[ϕT ]

−1
p−1 |∂t ϕT |

p
p−1 dx dt

) p−1
p

. (17)

Similarly, one has ∫
Q
|u||∆ϕT | dx dt ≤ I

1
p

T

(∫
Q
[ϕT ]

−1
p−1 |∆ϕT |

p
p−1 dx dt

) p−1
p

. (18)

Using (16)–(18), one obtains

IT + C1Tρ ≤ |σ(κ)|I
1
p

T

(
A

p−1
p

T + B
p−1

p
T

)
, (19)
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where
AT =

∫
Q
[ϕT ]

−1
p−1 |∂t ϕT |

p
p−1 dx dt

and
BT =

∫
Q
[ϕT ]

−1
p−1 |∆ϕT |

p
p−1 dx dt.

Further, we shall estimate the terms AT and BT for sufficiently large T.
• Estimate of AT : using (11), one obtains

AT =

(∫
Dc

ψ
( x

T

)τ
dx
)(∫ ∞

0
[ξT(t)]

−1
p−1 |ξ ′T(t)|

p
p−1 dt

)

≤
(

TN
∫
|y|<2

ψ(y)τ dy
)T

−ρp
p−1 τ

p
p−1

∫ ∞

0
ξ

(
t

Tρ

)τ− p
p−1
∣∣∣∣ξ ′ ( t

Tρ

)∣∣∣∣
(τ−1)p

p−1
dt


= τ

p
p−1

(∫
|y|<2

ψ(y)τ dy
)(∫ 1

0
ξ(s)τ− p

p−1 |ξ ′(s)|
(τ−1)p

p−1 ds
)

TN− ρ
p−1 ,

i.e.,
AT ≤ C2TN− ρ

p−1 , (20)

where

C2 = τ
p

p−1

(∫
|y|<2

ψ(y)τ dy
)(∫ 1

0
ξ(s)τ− p

p−1 |ξ ′(s)|
(τ−1)p

p−1 ds
)
> 0.

• Estimate of BT : using (11), one has

BT =

(∫ ∞

0
ξT(t) dt

)(∫
Dc

ψT(x)
−1
p−1 |∆ψT(x)|

p
p−1 dx

)
. (21)

On the other hand, ∫ ∞

0
ξT(t) dt =

∫ ∞

0
ξ

(
t

Tρ

)τ

dt

= Tρ
∫ 1

0
ξ(s) ds. (22)

Furthermore, one has

∫
Dc ψT(x)

−1
p−1 |∆ψT(x)|

p
p−1 dx = TN− 2p

p−1
∫

1<|y|<2 ψ(y)
−τ
p−1 |∆ψ(y)τ |

p
p−1 dy

= TN− 2p
p−1 τ

p
p−1
∫

1<|y|<2 ψ(y)τ− 2p
p−1
∣∣(τ − 1)|∇ψ(y)|2 + ψ(y)∆ψ(y)

∣∣ p
p−1 dy.

(23)

Hence, using (21), (22), and (23), one deduces that

BT ≤ C3Tρ+N− 2p
p−1 , (24)

where

C3 = τ
p

p−1

(∫ 1

0
ξ(s) ds

)(∫
1<|y|<2

ψ(y)τ− 2p
p−1
∣∣∣(τ − 1)|∇ψ(y)|2 + ψ(y)∆ψ(y)

∣∣∣ p
p−1 dy

)
> 0.

Next, using (19), (20), and (24), it holds

IT + C1Tρ ≤ C4|σ(κ)|I
1
p

T

(
T
(

N− ρ
p−1

)
p−1

p + T
(

ρ+N− 2p
p−1

)
p−1

p

)
, (25)
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where

C4 = max

{
C

p−1
p

2 , C
p−1

p
3

}
> 0.

Taking ρ = 2 in (25), one obtains

IT + C1T2 ≤ 2C4|σ(κ)|I
1
p

T T
N(p−1)−2

p . (26)

Using Young’s inequality, it holds

2C4|σ(κ)|I
1
p

T T
N(p−1)−2

p ≤ IT + C5TN− 2
p−1 ,

where

C5 =
p− 1

p

(
2p
−1
p C4|σ(κ)|

) p
p−1

> 0.

Hence, by (26), one deduces that

0 < C6 ≤ TN−2− 2
p−1 , (27)

where
C6 =

C1

C5
.

Suppose now that N ≥ 3 and 1 < p < pc. In this case, one has

N − 2− 2
p− 1

< 0.

Hence, letting T → ∞ in (27), we obtain 0 < C6 ≤ 0, that is a contradiction. This proves part (i) of
Theorem 1. Similarly, if N = 2, for all 1 < p < ∞, one has

N − 2− 2
p− 1

= − 2
p− 1

< 0.

Letting T → ∞ in (27), we obtain the same contradiction as in the above case, which proves part (ii)
of Theorem 1.
Consider now the case (κ, λ) ∈ H2, and suppose that u ∈ SGL. Using (13), for sufficiently large
0 < T < ∞, one has∫

Q
|u|p ϕT dx dt− µ(κ)Im

∫
Γ

λ(x)ϕT dσ dt ≤ |µ(κ)|
∫
Q
|u||∂t ϕT | dx dt + |µ(κ)|

∫
Q
|u||∆ϕT | dx dt,

where µ(κ) = (Im κ)−1. Next, using similar techniques as above, a contradiction follows.

Remark 1. Note that no assumptions on the initial condition are required in Theorem 1.

Remark 2. Note that the condition 1 < p < pc in the assertion (i) of Theorem 1 is optimal, in the sense that,
if p > pc, then there exists (κ, λ) ∈ H1 ∪ H2, such that SGL 6= ∅. Indeed, for p > pc =

N
N−2 (N ≥ 3), let

w(x) = −ερ−δ, ρ = |x| ≥ 1,

where
δ =

2
p− 1

and ε = [δ(N − 2− δ)]
1

p−1 . (28)
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Note that since p > pc, one has δ(N − 2− δ) > 0. On the other hand, using (28), one obtains

∆w(x) = −ε∆ρ−δ

= −ε

[
d2

dρ2 (ρ
−δ) +

(N − 1)
ρ

d
dρ

(ρ−δ)

]
= −ε

[
(−δ)(−δ− 1)ρ−δ−2 +

(N − 1)
ρ

(
−δρ−δ−1

)]
= ε[δ(N − 2− δ)]ρ−δ−2

= εpρ−δ−2

= εpρ
−2p
p−1

= εpρ−δp,

which yields
∆w(x) = |w(x)|p, x ∈ Dc. (29)

Moreover,

− dw(x)
dρ

∣∣∣∣
ρ=1

= −ε,

which yields
∂w
∂ν

(x) = −ε, x ∈ ∂D. (30)

Next, taking
u(t, x) = w(x), t ≥ 0, x ∈ Dc,

using (29) and (30), one deduces that u is a stationary solution to Equations (1) and (2) with κ = 1 and λ ≡ −ε.
Observe that (k, λ) ∈ H1 ∪ H2 and u ∈ SGL.

4. Conclusions

Nonlinear Schrödinger equations attracted the attention of many mathematicians,
due to their significant applications in physics. Many efforts were made to identify the blow-up
of the solution of different boundary value problems involving such a type of nonlinear
equations. Hence, there is a variety of approaches in the literature to studying the dynamical
properties of the blow-up of the solution and prove the existence/nonexistence of global weak
solutions. Here, Theorem 1 complements the results with power-type nonlinearities, in the
nonhomogeneous Neumann boundary case. As pointed out above, we do not impose any assumption
on the initial condition. We establish the result using the approach originally developed by Mitidieri
and Pohozaev [15], together with an adequate choice of the test function. We recall that the approach
methodology is indirect, starting on the assumption of the existence of a global weak solution
to (1) and (2). The test function in our case is different from that used in recent analogous papers
(see, for example, the one in [14]).
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