A Note on Ricci Solitons
Abstract
1. Introduction
2. Preliminaries
3. Characterizations of Connected Trivial Ricci Solitons
4. Characterizations of Compact Trivial Ricci Solitons
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chow, B.; Lu, P.; Ni, L. Hamilton’s Ricci flow: Graduate studies in Mathematics. In Hamilton’s Ricci Flow: Graduate Studies in Mathematics; AMS Providence: Providence, RI, USA, 2006. [Google Scholar]
- Derdzinski, A. A Myers-type theorem and compact Ricci solitons. Proc. Am. Math. Soc. 2006, 134, 3645–3648. [Google Scholar] [CrossRef]
- Munteanu, O.; Wang, J. Geometry of shrinking Ricci solitons. Comp. Math. 2015, 151, 2273–2300. [Google Scholar] [CrossRef]
- Munteanu, O.; Wang, J. Positively curved shrinking Ricci solitons are compact. J. Diff. Geom. 2017, 106, 499–505. [Google Scholar] [CrossRef]
- Wylie, W. Complete shrinking Ricci solitons have finite fundamental group. Proc. Am. Math. Soc. 2008, 136, 1803–1806. [Google Scholar] [CrossRef]
- Cao, H.-D. Geometry of Ricci solitons. Chin. Ann. Math. 2006, 27B, 121–142. [Google Scholar] [CrossRef]
- Cao, H.-D.; Zhou, D. On complete gradient shrinking Ricci solitons. Diff. Geom. 2010, 85, 175–185. [Google Scholar] [CrossRef]
- Deshmukh, S. Jacobi-type vector fields on Ricci solitons. Bull. Math. Soc. Sci. Math. Roum. 2012, 1, 41–50. [Google Scholar]
- Li, F.; Zhou, J. Rigidity characterization of compact Ricci solitons. J. Korean Math. Soc. 2019, 56. [Google Scholar] [CrossRef]
- Lee, J.M. Riemannian Manifolds. In Riemannian Manifolds; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Donaldson, S. Geometric Analysis. In Lecture Notes for TCC Course “Geometric Analysis”; Available online: http://wwwf.imperial.ac.uk/~skdona/GEOMETRICANALYSIS.PDF (accessed on 16 February 2020).
- Graf, W. Ricci flow gravity. PMC Phys. A 2007, 1, 3. [Google Scholar] [CrossRef]
- Ivancevic, V.G.; Ivancevic, T.T. Ricci flow and nonlinear reaction-diffusion systems in biology, chemistry, and physics. Nonliear Dyn. 2011, 65, 35–54. [Google Scholar] [CrossRef]
- Sandhu, R.S.; Geojou, T.T.; Tamenbaun, A.R. Ricci curvature: An economic indicator for market fragility and system risk. Sci. Adv. 2016, 2, 1501495. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gu, X.; Chan, T.F.; Thompson, P.W.; Yau, S.T. Brain surface conformal parametrization with the Ricci flow. IEEE Trans. Med. Imaging 2012, 10, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, S. Almost Ricci solitons isometric to spheres. Intern. J. Geom. Methods Mod. Phys. 2019, 16, 1950073. [Google Scholar] [CrossRef]
- Deshmukh, S.; Chen, B.Y. A note on Yamabe solitons. Balkan J. Geom. Appl. 2018, 23, 37–43. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deshmukh, S.; Alsodais, H. A Note on Ricci Solitons. Symmetry 2020, 12, 289. https://doi.org/10.3390/sym12020289
Deshmukh S, Alsodais H. A Note on Ricci Solitons. Symmetry. 2020; 12(2):289. https://doi.org/10.3390/sym12020289
Chicago/Turabian StyleDeshmukh, Sharief, and Hana Alsodais. 2020. "A Note on Ricci Solitons" Symmetry 12, no. 2: 289. https://doi.org/10.3390/sym12020289
APA StyleDeshmukh, S., & Alsodais, H. (2020). A Note on Ricci Solitons. Symmetry, 12(2), 289. https://doi.org/10.3390/sym12020289