Self-Adjointness and Conservation Laws of Frobenius Type Equations
Abstract
:1. Introduction
2. Quasi Self-Adjointness of Frobenius Type Equations
3. Nonlinear Self-Adjointness of Frobenius Type Equations
4. Conservation Laws of Frobenius Type Equations
5. Conclusions and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 1967, 19, 1095–1097. [Google Scholar] [CrossRef]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer Science and Business Media: New York, NY, USA, 2012. [Google Scholar]
- Wang, Y.H. CTE method to the interaction solutions of Boussinesq-Burgers equations. Appl. Math. Lett. 2014, 38, 100–105. [Google Scholar] [CrossRef]
- Esipov, S.E. Coupled Burgers equations: A model of polydispersive sedimentation. Phys. Rev. E 1995, 52, 3711–3718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.F.; Fan, E.G.; Tam, H.W. A few expanding Lie algebras of the Lie algebra A1 and applications. Phys. Lett. A 2006, 359, 471–480. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tam, H.W. Discussion on integrable properties for higher-dimensional variable-coefficient nonlinear partial differential equations. J. Math. Phys. 2013, 54, 013516. [Google Scholar] [CrossRef]
- Naz, R.; Mason, D.P.; Mahomed, F.M. Conservation laws and conserved quantities for laminar two-dimensional and radial jets. Nonlinear Anal. Real 2009, 10, 2641–2651. [Google Scholar] [CrossRef]
- Bokhari, A.H.; Al-Dweik, A.Y.; Kara, A.H.; Mahomed, F.M.; Zaman, F.D. Double reduction of anonlinear (2 + 1) wave equation via conservation laws. Commun. Nonlinear Sci. 2011, 16, 1244–1253. [Google Scholar] [CrossRef]
- Avdonina, E.D.; Ibragimov, N.H.; Khamitova, R. Exact solutions of gasdynamic equations obtained by the method of conservation laws. Commun. Nonlinear Sci. 2013, 18, 2359–2366. [Google Scholar] [CrossRef]
- Noether, E. Invariante Variationsprobleme; Königliche Gesellschaft der Wissenschaften zu Göttingen, Nachrichten: Gottingen, Germany, 1971; Volume 1, pp. 186–207. [Google Scholar]
- Ibragimov, N.H. Integrating factors, adjoint equations and Lagrangians. J. Math. Anal. Appl. 2006, 318, 742–757. [Google Scholar] [CrossRef] [Green Version]
- Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef] [Green Version]
- Ibragimov, N.H. Nonlinear self-adjointness in constructing conservation laws. Arch. ALGA 2011, 7, 1–99. [Google Scholar]
- Ibragimov, N.H. Nonlinear self-adjointness and conservation laws. J. Phys. A Math. Theor. 2011, 44, 432002. [Google Scholar] [CrossRef]
- Ibragimov, N.H. Self-adjointness and conservation laws of a generalized Burgers equation. J. Phys. A Math. Theor. 2011, 44, 145201. [Google Scholar] [CrossRef] [Green Version]
- Ibragimov, N.H. Conservation laws and non-invariant solutions of anisotropic wave equations with a source. Nonlinear Anal. Real 2018, 40, 82–94. [Google Scholar] [CrossRef]
- Gazizov, R.K.; Ibragimov, N.H.; Lukashchuk, S.Y. Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations. Commun. Nonlinear Sci. 2015, 23, 153–163. [Google Scholar] [CrossRef]
- Zhao, Z.L.; Han, B. On symmetry analysis and conservation laws of the AKNS system. Z. Naturforsch. 2016, 71, 741–750. [Google Scholar] [CrossRef]
- Strachan, I.A.B.; Zuo, D.F. Integrability of the Frobenius algebra-valued Kadomtsev-Petviashvili hierarchy. J. Math. Phys. 2015, 56, 113509. [Google Scholar] [CrossRef] [Green Version]
- Zuo, D.F. The Frobenius-Virasoro algebra and Euler equations. J. Geom. Phys. 2014, 86, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Li, C.Z.; He, J.S. The extended -toda hierarchy. Theor. Math. Phys. 2015, 185, 1614–1635. [Google Scholar] [CrossRef] [Green Version]
- Li, C.Z. Gauge transformation and symmetries of the commutative multi-component BKP hierarchy. J. Phys. A Math. Theor. 2016, 49, 015203. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.F.; Li, C.Z. Affine Weyl group symmetries of Frobenius Painlevé equations. Math. Meth. Appl. Sci. 2020, 43, 3238–3252. [Google Scholar] [CrossRef]
- Wang, H.F.; Li, C.Z. Bäcklund transformation of Frobenius Painlevé equations. Mod. Phys. Lett. B 2018, 32, 1850181. [Google Scholar] [CrossRef]
- Wang, H.F.; Zhang, Y.F. Residual Symmetries and Bäcklund Transformations of Strongly Coupled Boussinesq-Burgers System. Symmetry 2019, 11, 1365. [Google Scholar] [CrossRef] [Green Version]
- Kompaneets, A.S. The establishment of thermal equilibrium between quanta and electrons. Z. Eksp. Teor. Fiz 1956, 31, 876–885. [Google Scholar]
- Ma, S.L.; Wu, Y.M.; Zuo, D.F. The Frobenius–Virasoro algebra and Euler equations-II: Multi-component cases. J. Geom. Phys. 2019, 135, 32–41. [Google Scholar] [CrossRef]
- Wang, Z.L.; Zhang, L.H.; Li, C.Z. Lie symmetry analysis to weakly coupled Kaup-Kupershmidt equation with time fractional order. Fractals 2019, 27, 1950052. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, Y. Self-Adjointness and Conservation Laws of Frobenius Type Equations. Symmetry 2020, 12, 1987. https://doi.org/10.3390/sym12121987
Wang H, Zhang Y. Self-Adjointness and Conservation Laws of Frobenius Type Equations. Symmetry. 2020; 12(12):1987. https://doi.org/10.3390/sym12121987
Chicago/Turabian StyleWang, Haifeng, and Yufeng Zhang. 2020. "Self-Adjointness and Conservation Laws of Frobenius Type Equations" Symmetry 12, no. 12: 1987. https://doi.org/10.3390/sym12121987