# Design and Analysis of Inertial Platform Insulation of the ELI-NP Project of Laser and Gamma Beam Systems

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology and Model of the Inertial Platform

## 3. Static Analysis

^{2}), the considered supplementary mass.

^{2}, the value considered in our study. In [26] has been presented the values of reinforced concrete offered by Eurocode (Structural design calculations according to Eurocodes). The Poisson’s ration used is 0.2, as recommended by [26]. The connection with the ground, after the three directions, is made by means of suspension springs. The springs are fixed to the ground and are connected to the inertial mass (boundary conditions). The rigidity of a single spring is k

_{z}= 1.85e + 6N/m after the vertical direction and kx = ky = 0.55e + 6 N/m for the other two directions. The dampers have the coefficient c

_{x}= c

_{y}= cz = 2000 kNs/m.

## 4. Modal Analysis

## 5. Discussion

## 6. Conclusions and Future Works

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A

**Figure A1.**Deformation of the concrete platform placed on the spring batteries: (

**a**) under its own weight and (

**b**) loaded with 1000 tons in point 1.

**Figure A2.**Deformation of the concrete platform (

**a**) loaded with 1000 tons in points 2 and (

**b**) loaded with 1000 tons in point 3.

**Figure A3.**Deformation of the concrete platform (

**a**) loaded with 1000 tons in points 4 and (

**b**) loaded with 1000 tons in point 5.

## Appendix B. Stress Field in the Platform (Expressed in MPa)

**Figure A5.**Stresses in the concrete platform expressed in MPa. (

**a**) under its own weight; (

**b**) loaded with 1000 tons in point 1; (

**c**) loaded with 1000 tons in points 2 and (

**d**) loaded with 1000 tons in point 3; (

**e**) loaded with 1000 tons in points 4 and (

**f**) loaded with 1000 tons in point 5; (

**g**) loaded with 1000 tons in points 6.

## Appendix C

## References

- The White Book of ELI Nuclear Physics Bucharest-Magurele, Romania. Available online: http://www.eli-np.ro/whitebook.php (accessed on 31 October 2020).
- Serafini, L. EuroGammaS proposal for the ELI-NP Gamma beam System. Technical Design Report, July. 2014. Technical Design Report. Available online: https://arxiv.org/ftp/arxiv/papers/1407/1407.3669.pdf (accessed on 31 October 2020).
- Habs, D.; Tajima, T.; Zamfir, V. Extreme Light Infrastructure–Nuclear Physics (ELI–NP): New Horizons for Photon Physics in Europe. Nucl. Phys. News
**2011**, 21, 23–29. [Google Scholar] [CrossRef] - J. Welch Ground Vibration and Siting of the Cryogenics Facility for Cornell ERL Prototype. Technical Design Report. Available online: https://www.classe.cornell.edu/public/ERL/2002/ERL02-3/ERL02-3.pdf (accessed on 25 November 2020).
- Arnold, C. Seismic Design & Devices for Detaching Building from the Ground. Archit. AIA J.
**1987**, 76, 64–67. [Google Scholar] - Tarics, A.G. Base-Isolation—A New Strategy for Earthquake Protection of Buildings. J. Archit. Plan. Res.
**1987**, 4, 64–76. [Google Scholar] - Teramoto, T. Recent Current of Nase Isolation and Seismic Control-System for Building Structure. Tetsu Hagane J. Iron Steel Inst. Jpn.
**1987**, 73, S348. [Google Scholar] - Jiang, M.; Rui, X.; Zhu, W.; Yang, F.; Zhang, Y. Optimal design of 6-DOF vibration isolation platform based on transfer matrix method for multibody systems. Acta Mech. Sin.
**2020**, 1–11. [Google Scholar] [CrossRef] - Han, P.; Wang, T.; Wang, D.H. Modeling and control of a Stewart platform based six-axis hybrid vibration isolation system. In Proceedings of the 2008 7th World Congress on Intelligent Control. and Automation, Chongqing, China, 25–27 June 2008; Volume 1–23, pp. 1613–1618. [Google Scholar] [CrossRef]
- Geng, Z.; Haynes, L.S. Six-degree-of-freedom active vibration isolation using a stewart platform mechanism. J. Robot. Syst.
**1993**, 10, 725–744. [Google Scholar] [CrossRef] - Liu, L.; Wang, B. Development of stewart platforms for active vibration isolation and precision pointing. In Proceedings of the International Conference on Smart Materials and Nanotechnology in Engineering, Harbin, China, 1–4 July 2007. [Google Scholar]
- Ma, R.; Bi, K.; Hao, H. Heave motion mitigation of semi-submersible platform using inerter-based vibration isolation system (IVIS). Eng. Struct.
**2020**, 219, 110833. [Google Scholar] [CrossRef] - Xie, X.; Diao, J.; Xu, Y.; Zhang, Z. Performance of a low-frequency hybrid vibration isolation platform for vibration-sensitive devices. J. Low Freq. Noise, Vib. Act. Control.
**2018**, 37, 1164–1175. [Google Scholar] [CrossRef] [Green Version] - Xu, Z.-D.; Xu, F.-H.; Chen, X. Vibration suppression on a platform by using vibration isolation and mitigation devices. Nonlinear Dyn.
**2015**, 83, 1341–1353. [Google Scholar] [CrossRef] - Assmann, R.; Jeanneret, B.; Verdier, A.; Vos, L.; Wildner, E.; Zimmermann, F.; Brinkmann, R.; Montag, C.; Reyzl, I.; Walker, N.; et al. Stability considerations for final focus systems of future linear collinder. In Proceedings of the 7th European Conference, EPAC 2000, Vienna, Austria, 26–30 June 2000; p. 447. [Google Scholar]
- Bolzon, B. Etude des Vibrations et de la Stabilisation à L’échelle Sous-Nanométrique des Doublets Finaux d’un Collisionneur Linéaire. Ph.D. Thesis, Université Chambery Annecy de Savoie, Chambéry, France, 2007. [Google Scholar]
- A Multi-Tev Linear Collider Based on Clic Technology, Conceptual Design Report. KEK Report 2012-1, Geneva. 2012. Available online: http://cds.cern.ch/record/1601966/files/ILCTDR-VOLUME_1.pdf. (accessed on 31 October 2020).
- Artoos, K. Compatibility and Integration of a CLIC Quadrupole Nanometre-Stabilization and Positioning system in a Large Accelerator Environment. In Proceedings of the 1st International Particle Accelerator Conference (IPAC’10), Kyoto, Japan, 23–28 May 2010; Volume 16, pp. 1274–1276. [Google Scholar]
- Vlase, S.; Marin, M.; Öchsner, A.; Scutaru, M.L. Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system. Contin. Mech. Thermodyn.
**2019**, 31, 715–724. [Google Scholar] [CrossRef] - Marin, M. Some basic theorems in elastostatics of micropolar materials with voids. J. Comput. Appl. Math.
**1996**, 70, 115–126. [Google Scholar] [CrossRef] [Green Version] - Itu, C.; Öchsner, A.; Vlase, S.; Marin, M. Improved rigidity of composite circular plates through radial ribs. Proc. Inst. Mech. Eng. Part. L J. Mater. Des. Appl.
**2019**, 233, 1585–1593. [Google Scholar] [CrossRef] - Scutaru, M.L.; Vlase, S.; Marin, M. New analytical method based on dynamic response of planar mechanical elastic systems. Bound. Value Probl.
**2020**, 104. [Google Scholar] [CrossRef] - Nazreen, M.S.; Mohamed, R.N.; Ab Kadir, M.A.; Azillah, N.; Shukri, N.A.; Mansor, S.; Zamri, F. Characterization of lightweight concrete made of palm oil clinker aggregates. MATEC Web Conf.
**2018**, 250, 03002. [Google Scholar] [CrossRef] - Gul, M.; Bashir, A.; Naqash, J.A. Study of Modulus of Elasticity of Steel Fiber Reinforced Concrete. Int. J. Eng. Adv. Technol.
**2014**, 3. ISSN: 2249-8958. Available online: https://www.ijeat.org/wp-content/uploads/papers/v3i4/D2995043414.pdf (accessed on 31 October 2020). - Yusof, M.A.; Nor, N.M.; Fauzi, M.; Zain, M.; Ismail, A.; Sohaimi, A.; Zaidi, A.M. Mechanical Properties of Hybrid Steel Fibre Reinforced Concrete with Different Aspect Ratio. Aust. J. Basic Appl. Sci.
**2011**, 5, 159–166. [Google Scholar] - Eurocode Applied. Available online: https://eurocodeapplied.com/design/en1992/concrete-design-properties (accessed on 25 November 2020).
- Vlase, S. Elimination of lagrangian multipliers. Mech. Res. Commun.
**1987**, 14, 17–22. [Google Scholar] [CrossRef] - Rades, M. Mechanical Vibration, II, Structural Dynamics Modeling; Printech Publishing House: Bangalore, Karnataka, India, 2010. [Google Scholar]
- Vlase, S.; Negrean, I.; Marin, M.; Scutaru, M.L. Energy of Accelerations Used to Obtain the Motion Equations of a Three- Dimensional Finite Element. Symmetry
**2020**, 12, 321. [Google Scholar] [CrossRef] [Green Version] - Hu, R.; Iwamoto, S.; Feng, L.; Ju, S.; Hu, S.; Ohnishi, M.; Nagai, N.; Hirakawa, K.; Shiomi, J. Machine-Learning-Optimized Aperiodic Superlattice Minimizes Coherent Phonon Heat Conduction. Phys. Rev. X
**2020**, 10, 021050. [Google Scholar] [CrossRef] - Imani, M.; Ghoreishi, S.F. Bayesian Optimization Objective-Based Experimental Design. In Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020. [Google Scholar]

**Figure 12.**Comparison between the deformations of the standard plate and the deformations after removing a 250 tons wall: (

**a**) deformation field for the initial platform and (

**b**) deformation field if a wall is removed. There are no significant differences between in the two cases.

Nr. | 25,000 Tons | 35,000 Tons | 54,000 Tons |
---|---|---|---|

1 | 2.27 | 1.90 | 1.53 |

2 | 2.43 | 2.03 | 1.64 |

3 | 2.49 | 2.08 | 1.68 |

4 | 3.38 | 2.82 | 2.28 |

5 | 3.40 | 2.84 | 2.29 |

6 | 3.45 | 2.89 | 2.33 |

7 | 3.60 | 3.01 | 2.42 |

8 | 3.66 | 3.06 | 2.47 |

9 | 3.89 | 3.26 | 2.62 |

10 | 3.92 | 3.28 | 2.64 |

11 | 4.00 | 3.34 | 2.69 |

12 | 4.04 | 3.38 | 2.73 |

13 | 4.14 | 3.46 | 2.78 |

14 | 4.38 | 3.66 | 2.95 |

15 | 4.42 | 3.69 | 2.96 |

16 | 4.43 | 3.71 | 2.98 |

17 | 4.52 | 3.78 | 3.04 |

18 | 4.57 | 3.82 | 3.07 |

19 | 4.60 | 3.85 | 3.10 |

20 | 4.64 | 3.88 | 3.12 |

21 | 4.72 | 3.95 | 3.19 |

22 | 4.79 | 4.00 | 3.23 |

23 | 4.97 | 4.16 | 3.36 |

24 | 5.04 | 4.21 | 3.4 |

25 | 5.06 | 4.23 | 3.41 |

26 | 5.18 | 4.33 | 3.49 |

27 | 5.33 | 4.46 | 3.6 |

28 | 5.42 | 4.54 | 3.66 |

29 | 5.57 | 4.66 | 3.76 |

30 | 5.64 | 4.72 | 3.8 |

31 | 5.67 | 4.74 | 3.83 |

32 | 5.84 | 4.88 | 3.94 |

33 | 6.05 | 5.06 | 4.08 |

34 | 6.3 | 5.27 | 4.25 |

35 | 6.38 | 5.33 | 4.31 |

36 | 6.62 | 5.53 | 4.47 |

37 | 6.69 | 5.59 | 4.51 |

38 | 6.90 | 5.77 | 4.66 |

39 | 7.10 | 5.93 | 4.79 |

40 | 7.13 | 5.96 | 4.81 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Itu, C.; Bratu, P.; Borza, P.N.; Vlase, S.; Lixandroiu, D.
Design and Analysis of Inertial Platform Insulation of the ELI-NP Project of Laser and Gamma Beam Systems. *Symmetry* **2020**, *12*, 1972.
https://doi.org/10.3390/sym12121972

**AMA Style**

Itu C, Bratu P, Borza PN, Vlase S, Lixandroiu D.
Design and Analysis of Inertial Platform Insulation of the ELI-NP Project of Laser and Gamma Beam Systems. *Symmetry*. 2020; 12(12):1972.
https://doi.org/10.3390/sym12121972

**Chicago/Turabian Style**

Itu, Calin, Polidor Bratu, Paul Nicolae Borza, Sorin Vlase, and Dorin Lixandroiu.
2020. "Design and Analysis of Inertial Platform Insulation of the ELI-NP Project of Laser and Gamma Beam Systems" *Symmetry* 12, no. 12: 1972.
https://doi.org/10.3390/sym12121972