The Design of GLR Control Chart for Monitoring the Geometric Observations Using Sequential Sampling Scheme
Abstract
:1. Introduction
2. The SS GLR Chart for Geometric Observations
- Calculate .
- If ≤ g, then at sampling point k, we will stop sampling and await till sampling point to be sampled accordingly. So, here the sample range at k sampling point is = l.
- In case then we have two options which need to be followed.
- (i)
- Draw further analysis at point .
- (ii)
- Move to stage (1) as addressed above, with the existing set of data points at the k sampling point specified as .
- When , subsequently indicates that there has been a shift in the parameter .
3. Performance Measures
3.1. In-Control Performance Measurements
3.2. Out-of-Control Performance Measurements
3.3. The Extra Quadratic Loss
4. Choosing the Parameters of the SS GLR Chart
4.1. The Window Size of the SS GLR Chart
4.2. The Control Limits of SS GLR Chart
5. Performance Comparisons with Other Charts
5.1. Comparison with the Geometric GLR Chart
5.2. Comparison with the CUSUM Geometric Chart
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xie, M.; Goh, T.N.; Kuralmani, V. Statistical Models and Control Charts for High-Quality Processes; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Shewhart, W.A. Economic Control of Quality of Manufactured Product; Macmillan And Co Ltd.: London, UK, 1931. [Google Scholar]
- Westgard, J.O.; Groth, T.; Aronsson, T.; De Verdier, C.H. Combined Shewhart-cusum control chart for improved quality control in clinical chemistry. Clin. Chem. 1977, 23, 1881–1887. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yang, M.; Jiang, W.; Khoo, M.B. Optimization designs of the combined Shewhart-CUSUM control charts. Comput. Stat. Data Anal. 2008, 53, 496–506. [Google Scholar] [CrossRef]
- Lorden, G. Procedures for reacting to a change in distribution. Ann. Math. Stat. 1971, 42, 1897–1908. [Google Scholar] [CrossRef]
- Sparks, R.S. CUSUM charts for signalling varying location shifts. J. Qual. Technol. 2000, 32, 157–171. [Google Scholar] [CrossRef]
- Zhao, Y.; Tsung, F.; Wang, Z. Dual CUSUM control schemes for detecting a range of mean shifts. IIE Trans. 2005, 37, 1047–1057. [Google Scholar] [CrossRef]
- Han, D.; Tsung, F.; Hu, X.; Wang, K. CUSUM and EWMA multi-charts for detecting a range of mean shifts. Stat. Sin. 2007, 17, 1139–1164. [Google Scholar]
- Jackson, J.E. All count distributions are not alike. J. Qual. Technol. 1972, 4, 86–92. [Google Scholar] [CrossRef]
- Sheaffer, R.L.; Leavenworth, R.S. The negative binomial model for counts in units of varying size. J. Qual. Technol. 1976, 8, 158–163. [Google Scholar] [CrossRef]
- Bourke, P.D. Detecting a shift in fraction nonconforming using run-length control charts with 100% inspection. J. Qual. Technol. 1991, 23, 225–238. [Google Scholar] [CrossRef]
- Feller, W. An Introduction to Probability Theory and Its Application Vol II; John Wiley and Sons: Hoboken, NJ, USA, 1971. [Google Scholar]
- Benneyan, J.C. Performance of number-between g-type statistical control charts for monitoring adverse events. Health Care Manag. Sci. 2001, 4, 319–336. [Google Scholar] [CrossRef]
- Santiago, E.; Smith, J. Control charts based on the exponential distribution: Adapting runs rules for the t chart. Qual. Eng. 2013, 25, 85–96. [Google Scholar] [CrossRef]
- Montgomery, D.C. Control charts for variables. Introduction to Statistical Quality Control, Arizona, 6rd ed.; Wiley: Hoboken, NJ, USA, 2009; pp. 226–268. [Google Scholar]
- Kim, B.J.; Lee, J. Adjustment of control limits for geometric charts. Commun. Stat. Appl. Methods 2015, 22, 519–530. [Google Scholar] [CrossRef]
- Chang, T.C.; Gan, F.F. Cumulative sum charts for high yield processes. Stat. Sin. 2001, 11, 791–805. [Google Scholar]
- Xie, W.; Xie, M.; Goh, T.N. A Shewhart-like charting technique for high yield processes. Qual. Reliab. Eng. Int. 1995, 11, 189–196. [Google Scholar] [CrossRef]
- Quesenberry, C.P. Geometric Q charts for high quality processes. J. Qual. Technol. 1995, 27, 304–315. [Google Scholar] [CrossRef]
- Kaminsky, F.C.; Benneyan, J.C.; Davis, R.D.; Burke, R.J. Statistical control charts based on a geometric distribution. J. Qual. Technol. 1992, 24, 63–69. [Google Scholar] [CrossRef]
- Willsky, A.; Jones, H. A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems. IEEE Trans. Autom. Control 1976, 21, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Siegmund, D.; Venkatraman, E.S. Using the generalized likelihood ratio statistic for sequential detection of a change-point. Ann. Stat. 1995, 23, 255–271. [Google Scholar] [CrossRef]
- Hawkins, D.M.; Zamba, K.D. Statistical process control for shifts in mean or variance using a changepoint formulation. Technometrics 2005, 47, 164–173. [Google Scholar] [CrossRef]
- Lai, T.L.; Shan, J.Z. Efficient recursive algorithms for detection of abrupt changes in signals and control systems. IEEE Trans. Autom. Control 1999, 44, 952–966. [Google Scholar]
- Reynolds, M.R., Jr.; Lou, J. An evaluation of GLR control chart combined with an X chart. J. Qual. Technol. 2010, 42, 287–310. [Google Scholar] [CrossRef]
- Huang, W.; Reynolds, M.R., Jr.; Wang, S. A binomial GLR control chart for monitoring a proportion. J. Qual. Technol. 2012, 44, 192–208. [Google Scholar] [CrossRef]
- Huang, W.; Wang, S.; Reynolds, M.R., Jr. A generalized likelihood ratio chart for monitoring Bernoulli processes. Qual. Reliab. Eng. Int. 2013, 29, 665–679. [Google Scholar] [CrossRef]
- Lee, J.; Peng, Y.; Wang, N.; Reynolds, M.R., Jr. A GLR control chart for monitoring a multinomial process. Qual. Reliab. Eng. Int. 2017, 33, 1773–1782. [Google Scholar] [CrossRef]
- Arnold, J.C.; Reynolds, M.R., Jr. CUSUM control charts with variable sample sizes and sampling intervals. J. Qual. Technol. 2001, 33, 66–81. [Google Scholar] [CrossRef]
- Park, C.; Reynolds, M.R., Jr. Economic design of a variable sampling rate X chart. J. Qual. Technol. 1999, 31, 427–443. [Google Scholar] [CrossRef]
- Prabhu, S.S.; Runger, G.C.; Keats, J.B. X chart with adaptive sample sizes. Int. J. Prod. Res. 1993, 31, 2895–2909. [Google Scholar] [CrossRef]
- Reynolds, M.R., Jr. Shewhart and EWMA variable sampling interval control charts with sampling at fixed times. J. Qual. Technol. 1996, 28, 199–212. [Google Scholar] [CrossRef]
- Reynolds, M.R., Jr. Variable-sampling-interval control charts with sampling at fixed times. IIE Trans. 1996, 28, 497–510. [Google Scholar] [CrossRef]
- Reynolds, M.R.; Amin, R.W.; Arnold, J.C.; Nachlas, J.A. Charts with variable sampling intervals. Technometrics 1988, 30, 181–192. [Google Scholar] [CrossRef]
- Reynolds, M.R.; Stoumbos, Z.G. The SPRT chart for monitoring a proportion. IIE Trans. 1998, 30, 545–561. [Google Scholar] [CrossRef]
- Stoumbos, Z.G.; Reynolds, M.R., Jr. Control charts applying a general sequential test at each sampling point. Seq. Anal. 1996, 15, 159–183. [Google Scholar] [CrossRef]
- Stoumbos, Z.G.; Reynolds, M.R., Jr. Control charts applying a sequential test at fixed sampling intervals. J. Qual. Technol. 1997, 29, 21–40. [Google Scholar] [CrossRef]
- Stoumbos, Z.G.; Reynolds, M.R., Jr. The SPRT control chart for the process mean with samples starting at fixed times. Nonlinear Anal. Real World Appl. 2001, 2, 1–34. [Google Scholar] [CrossRef]
- Peng, Y.; Reynolds, M.R., Jr. A GLR Control Chart for Monitoring the Process Mean with Sequential Sampling. Seq. Anal. Des. Methods Appl. 2014, 33, 298–317. [Google Scholar] [CrossRef]
- KazemiNia, A.; Gildeh, B.S.; Abbasi Ganji, Z. The design of geometric generalized likelihood ratio control chart. Qual. Reliab. Eng. Int. 2018, 34, 953–965. [Google Scholar]
- Brook, D.A.E.D.; Evans, D. An approach to the probability distribution of CUSUM run length. Biometrika 1972, 59, 539–549. [Google Scholar] [CrossRef]
- Reynolds, M.R., Jr.; Stoumbos, Z.G. A CUSUM chart for monitoring a proportion when inspecting continuously. J. Qual. Technol. 1999, 31, 87–108. [Google Scholar] [CrossRef]
- Szarka III, J.L.; Woodall, W.H. On the equivalence of the Bernoulli and geometric CUSUM charts. J. Qual. Technol. 2012, 44, 54–62. [Google Scholar] [CrossRef]
SS GLR Charts, ASN = 1.5, d = 1.5 | |||||||
---|---|---|---|---|---|---|---|
m= | 1 | 4 | 10 | 15 | 50 | 100 | 250 |
δ | |||||||
1 | 1401.10 | 1401.10 | 1400.36 | 1400.22 | 1400.22 | 1400.05 | 1400.06 |
1.1 | 684.35 | 649.06 | 621.78 | 612.98 | 580.32 | 563.19 | 551.37 |
1.2 | 235.67 | 212.02 | 189.44 | 180.50 | 162.09 | 157.70 | 156.29 |
1.3 | 104.81 | 89.79 | 78.79 | 75.18 | 68.79 | 68.35 | 69.05 |
1.8 | 14.21 | 12.29 | 11.62 | 11.62 | 11.98 | 12.19 | 12.40 |
2 | 9.75 | 8.19 | 7.91 | 7.98 | 8.32 | 8.61 | 8.83 |
3 | 3.36 | 3.00 | 3.11 | 3.23 | 3.50 | 3.59 | 3.53 |
4 | 2.06 | 1.92 | 2.03 | 2.14 | 2.32 | 2.33 | 2.41 |
6 | 1.30 | 1.28 | 1.35 | 1.39 | 1.49 | 1.53 | 1.55 |
10 | 1.03 | 1.00 | 1.03 | 1.05 | 1.09 | 1.11 | 1.11 |
15 | 0.97 | 0.94 | 0.95 | 0.95 | 0.97 | 0.98 | 0.98 |
20 | 0.95 | 0.90 | 0.92 | 0.91 | 0.95 | 0.95 | 0.98 |
30 | 0.93 | 0.87 | 0.90 | 0.90 | 0.91 | 0.94 | 0.94 |
EQL= | 106.48 | 99.45 | 97.90 | 97.06 | 95.99 | 96.07 | 96.08 |
h= | 6.8373 | 6.8645 | 6.8773 | 6.8848 | 6.8853 | 6.8833 | 6.8763 |
g= | 0.9290 | 1.1990 | 1.3633 | 1.4313 | 1.5945 | 1.6668 | 1.7428 |
SS GLR Charts, ASN = 5, d = 5 | |||||||
---|---|---|---|---|---|---|---|
m= | 1 | 5 | 10 | 20 | 50 | 100 | 150 |
δ | |||||||
1 | 1401.33 | 1401.28 | 1401.23 | 1401.28 | 1401.10 | 1401.28 | 1401.55 |
1.1 | 361.71 | 351.00 | 345.32 | 343.02 | 343.42 | 343.10 | 343.92 |
1.2 | 128.78 | 108.02 | 104.86 | 103.55 | 105.14 | 105.21 | 103.47 |
1.3 | 74.96 | 51.56 | 51.73 | 54.12 | 56.24 | 54.43 | 53.77 |
1.8 | 13.91 | 13.83 | 13.38 | 15.47 | 15.21 | 14.70 | 14.57 |
2 | 15.31 | 9.53 | 10.25 | 12.01 | 12.63 | 12.82 | 12.55 |
3 | 6.85 | 4.64 | 4.42 | 4.24 | 4.17 | 4.29 | 4.16 |
4 | 3.33 | 3.27 | 3.13 | 3.41 | 3.41 | 3.49 | 3.31 |
6 | 2.72 | 2.28 | 2.23 | 2.25 | 2.38 | 2.29 | 2.38 |
10 | 2.59 | 2.06 | 1.98 | 2.03 | 2.11 | 2.04 | 2.11 |
15 | 2.49 | 1.98 | 1.93 | 1.95 | 2.03 | 2.03 | 2.03 |
20 | 2.45 | 1.97 | 1.88 | 1.91 | 2.00 | 2.00 | 2.00 |
30 | 2.40 | 1.86 | 1.81 | 1.89 | 1.92 | 1.99 | 1.99 |
EQL= | 173.83 | 139.48 | 135.76 | 139.33 | 142.96 | 144.48 | 144.54 |
h= | 5.6545 | 5.6016 | 5.5997 | 5.5937 | 5.5902 | 5.5897 | 5.5890 |
g= | 0.3373 | 0.4309 | 0.4545 | 0.4804 | 0.5069 | 0.5151 | 0.5238 |
SS Geometric GLR Chart | Geometric GLR Chart | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ASN = n = 5 | ||||||||||
m= | 1 | 5 | 10 | 50 | 100 | 100 | 160 | 180 | 200 | 300 |
δ | ||||||||||
1 | 1401.33 | 1401.28 | 1401.23 | 1401.1 | 1401.28 | 1400.6 | 1400.45 | 1400.05 | 1400.9 | 1400.9 |
1.1 | 361.71 | 351 | 345.32 | 343.42 | 343.1 | 421.35 | 353.6 | 356.3 | 355.7 | 354.05 |
1.2 | 128.78 | 108.02 | 104.86 | 105.14 | 105.21 | 174.95 | 175.35 | 175.45 | 175.6 | 175.75 |
1.3 | 74.96 | 51.56 | 51.73 | 56.24 | 54.43 | 129.1 | 127.3 | 128.5 | 128.9 | 129 |
1.8 | 13.91 | 13.83 | 13.38 | 15.21 | 14.7 | 30.95 | 31.05 | 31.55 | 31.7 | 31.8 |
2 | 15.31 | 9.53 | 10.25 | 12.63 | 12.82 | 24.25 | 24.35 | 24.55 | 24.55 | 24.65 |
3 | 6.85 | 4.64 | 4.42 | 4.17 | 4.29 | 10.85 | 10.9 | 10.8 | 10.85 | 10.9 |
4 | 3.33 | 3.27 | 3.13 | 3.41 | 3.49 | 7.95 | 7.95 | 7.95 | 8 | 8.05 |
6 | 2.72 | 2.28 | 2.23 | 2.38 | 2.29 | 5.55 | 5.65 | 5.65 | 5.65 | 5.7 |
10 | 2.59 | 2.06 | 1.98 | 2.11 | 2.04 | 3.55 | 3.55 | 3.55 | 3.6 | 3.6 |
15 | 2.49 | 1.98 | 1.93 | 2.03 | 2.03 | 2.55 | 2.55 | 2.55 | 2.55 | 2.55 |
20 | 2.45 | 1.97 | 1.88 | 2 | 2 | 2.55 | 2.55 | 2.55 | 2.55 | 2.55 |
30 | 2.4 | 1.86 | 1.81 | 1.92 | 1.99 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
EQL= | 173.83 | 139.48 | 135.76 | 142.96 | 144.48 | 248.31 | 245.56 | 245.79 | 246.05 | 246.13 |
h= | 5.6545 | 5.6016 | 5.5997 | 5.5902 | 5.5897 | 5.576 | 5.592 | 5.608 | 5.624 | 5.64 |
g= | 0.3373 | 0.4309 | 0.4545 | 0.5069 | 0.5151 | - | - | - | - | - |
SS Geometric GLR Chart | CUSUM Geometric Chart | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
ASN = n = 5 | ||||||||||
m= | 1 | 5 | 10 | 50 | 100 | δ1 = 1.1 | 1.5 | 1.7 | 1.8 | 2 |
δ | ||||||||||
1 | 1401.33 | 1401.28 | 1401.23 | 1401.1 | 1401.28 | 1400.4 | 1400.45 | 1400.1 | 1400.7 | 1400.1 |
1.2 | 128.78 | 108.02 | 104.86 | 105.14 | 105.21 | 148.6 | 135.15 | 167 | 198.65 | 227.25 |
1.3 | 74.96 | 51.56 | 51.73 | 56.24 | 54.43 | 89.2 | 92 | 113.6 | 121.4 | 146.95 |
1.8 | 13.91 | 13.83 | 13.38 | 15.21 | 14.7 | 37.2 | 27.2 | 25.6 | 25.85 | 27.3 |
2 | 15.31 | 9.53 | 10.25 | 12.63 | 12.82 | 31.35 | 22.05 | 20.3 | 19.7 | 20.4 |
3 | 6.85 | 4.64 | 4.42 | 4.17 | 4.29 | 22.3 | 13.55 | 12.1 | 11.35 | 10.5 |
4 | 3.33 | 3.27 | 3.13 | 3.41 | 3.49 | 18.95 | 11.7 | 10.15 | 9.55 | 8.8 |
6 | 2.72 | 2.28 | 2.23 | 2.38 | 2.29 | 17.6 | 10.05 | 7.8 | 7.2 | 6.8 |
10 | 2.59 | 2.06 | 1.98 | 2.11 | 2.04 | 15.4 | 9.85 | 6.9 | 6.9 | 6.75 |
15 | 2.49 | 1.98 | 1.93 | 2.03 | 2.03 | 16.45 | 9.8 | 7.1 | 7.05 | 7.05 |
20 | 2.45 | 1.97 | 1.88 | 2 | 2 | 15.2 | 8.95 | 7 | 7.05 | 6.85 |
30 | 2.4 | 1.86 | 1.81 | 1.92 | 1.99 | 14.65 | 7.2 | 6.75 | 6.8 | 6.7 |
h= | 5.6545 | 5.6016 | 5.5997 | 5.5902 | 5.5897 | 2.112 | 3.864 | 4 | 4.096 | 4.264 |
g= | 0.3373 | 0.4309 | 0.4545 | 0.5069 | 0.5151 | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzad, F.; Huang, Z.; Shafqat, A. The Design of GLR Control Chart for Monitoring the Geometric Observations Using Sequential Sampling Scheme. Symmetry 2020, 12, 1964. https://doi.org/10.3390/sym12121964
Shahzad F, Huang Z, Shafqat A. The Design of GLR Control Chart for Monitoring the Geometric Observations Using Sequential Sampling Scheme. Symmetry. 2020; 12(12):1964. https://doi.org/10.3390/sym12121964
Chicago/Turabian StyleShahzad, Faisal, Zhensheng Huang, and Ambreen Shafqat. 2020. "The Design of GLR Control Chart for Monitoring the Geometric Observations Using Sequential Sampling Scheme" Symmetry 12, no. 12: 1964. https://doi.org/10.3390/sym12121964