Strongly Lensed Supernovae in Well-Studied Galaxy Clusters with the Vera C. Rubin Observatory
Abstract
:1. Introduction
2. Estimating the Expected Number of Strongly Lensed Supernovae Observable by the Rubin Observatory
3. Results
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
CC SN | Core collapse supernova |
H | Hubble constant |
HFF | Hubble Frontier Fields |
HST | Hubble Space telescope |
JWST | James Webb Space Telescope |
LSST | Legacy Survey for Space and Time |
SFR | Star formation rate |
SN | Supernova |
SN Ia | Supernova Type Ia |
Rubin Observatory | Vera C. Rubin Observatory |
References
- Oguri, M. Strong gravitational lensing of explosive transients. Rep. Prog. Phys. 2019, 82, 126901. [Google Scholar] [CrossRef] [Green Version]
- Taubenberger, S.; Suyu, S.H.; Komatsu, E.; Jee, I.; Birrer, S.; Bonvin, V.; Courbin, F.; Rusu, C.E.; Shajib, A.J.; Wong, K.C. The Hubble constant determined through an inverse distance ladder including quasar time delays and Type Ia supernovae. A&A 2019, 628, L7. [Google Scholar] [CrossRef] [Green Version]
- Treu, T.; Marshall, P.J. Time delay cosmography. Astron. Astrophys. Rev. 2016, 24, 11. [Google Scholar] [CrossRef] [Green Version]
- Refsdal, S. On the possibility of determining Hubble’s parameter and the masses of galaxies from the gravitational lens effect. Mon. Not. R. Astron. Soc. 1964, 128, 307. [Google Scholar] [CrossRef]
- Goobar, A.; Mörtsell, E.; Amanullah, R.; Nugent, P. Cosmological parameters from lensed supernovae. Astron. Astrophys. 2002, 393, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Coe, D.; Moustakas, L.A. Cosmological Constraints from Gravitational Lens Time Delays. Astrophys. J. 2009, 706, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Riehm, T.; Mörtsell, E.; Goobar, A.; Amanullah, R.; Dahlén, T.; Jönsson, J.; Limousin, M.; Paech, K.; Richard, J. Near-IR search for lensed supernovae behind galaxy clusters. III. Implications for cluster modeling and cosmology. Astron. Astrophys. 2011, 536, A94. [Google Scholar] [CrossRef]
- Grillo, C.; Rosati, P.; Suyu, S.H.; Balestra, I.; Caminha, G.B.; Halkola, A.; Kelly, P.L.; Lombardi, M.; Mercurio, A.; Rodney, S.A.; et al. Measuring the Value of the Hubble Constant a la Refsdal. Astrophys. J. 2018, 860, 94. [Google Scholar] [CrossRef] [Green Version]
- Collaboration, P.; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results - VI. Cosmological parameters. A&A 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.4% Determination of the Local Value of the Hubble Constant. Astrophys. J. 2016, 826, 56. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.; Anderson, J.; MacKenty, J.W.; Bowers, J.B.; Clubb, K.I.; Filippenko, A.V.; Jones, D.O.; et al. New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant. Astrophys. J. 2018, 855, 136. [Google Scholar] [CrossRef] [Green Version]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astrophys. J. 2019, 876, 85. [Google Scholar] [CrossRef]
- Suyu, S.H.; Marshall, P.J.; Auger, M.W.; Hilbert, S.; Blandford, R.D.; Koopmans, L.V.E.; Fassnacht, C.D.; Treu, T. Dissecting the Gravitational lens B1608+656. II. Precision Measurements of the Hubble Constant, Spatial Curvature, and the Dark Energy Equation of State. Astrophys. J. 2010, 711, 201–221. [Google Scholar] [CrossRef]
- Wong, K.C.; Suyu, S.H.; Chen, G.C.F.; Rusu, C.E.; Millon, M.; Sluse, D.; Bonvin, V.; Fassnacht, C.D.; Taubenberger, S.; Auger, M.W.; et al. H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3σ tension between early and late-Universe probes. Mon. Not. R. Astron. Soc. 2020. [Google Scholar] [CrossRef]
- Goobar, A.; Leibundgut, B. Supernova Cosmology: Legacy and Future. Annu. Rev. Nucl. Part. Sci. 2011, 61, 251–279. [Google Scholar] [CrossRef] [Green Version]
- Pierel, J.D.R.; Rodney, S. Turning Gravitationally Lensed Supernovae into Cosmological Probes. Astrophys. J. 2019, 876, 107. [Google Scholar] [CrossRef] [Green Version]
- Holz, D.E. Seeing Double: Strong Gravitational Lensing of High-Redshift Supernovae. Astrophys. J. Lett. 2001, 556, L71–L74. [Google Scholar] [CrossRef]
- Nordin, J.; Rubin, D.; Richard, J.; Rykoff, E.; Aldering, G.; Amanullah, R.; Atek, H.; Barbary, K.; Deustua, S.; Fakhouri, H.K.; et al. Lensed Type Ia supernovae as probes of cluster mass models. Mon. Not. R. Astron. Soc. 2014, 440, 2742–2754. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.; McCully, C.; Jha, S.W.; Rodney, S.A.; Jones, D.O.; Graur, O.; Merten, J.; Zitrin, A.; Riess, A.G.; Matheson, T.; et al. Three Gravitationally Lensed Supernovae behind CLASH Galaxy Clusters. Astrophys. J. 2014, 786, 9. [Google Scholar] [CrossRef] [Green Version]
- Rodney, S.A.; Patel, B.; Scolnic, D.; Foley, R.J.; Molino, A.; Brammer, G.; Jauzac, M.; Bradač, M.; Broadhurst, T.; Coe, D.; et al. Illuminating a Dark Lens: A Type Ia Supernova Magnified by the Frontier Fields Galaxy Cluster Abell 2744. Astrophys. J. 2015, 811, 70. [Google Scholar] [CrossRef]
- Gal-Yam, A.; Maoz, D.; Sharon, K. Supernovae in deep Hubble Space Telescope galaxy cluster fields: Cluster rates and field counts. Mon. Not. R. Astron. Soc. 2002, 332, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Goobar, A.; Paech, K.; Stanishev, V.; Amanullah, R.; Dahlén, T.; Jönsson, J.; Kneib, J.P.; Lidman, C.; Limousin, M.; Mörtsell, E.; et al. Near-IR search for lensed supernovae behind galaxy clusters. II. First detection and future prospects. Astron. Astrophys. 2009, 507, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Petrushevska, T.; Amanullah, R.; Goobar, A.; Fabbro, S.; Johansson, J.; Kjellsson, T.; Lidman, C.; Paech, K.; Richard, J.; Dahle, H.; et al. High-redshift supernova rates measured with the gravitational telescope A 1689. Astron. Astrophys. 2016, 594, A54. [Google Scholar] [CrossRef] [Green Version]
- Petrushevska, T.; Goobar, A.; Lagattuta, D.J.; Amanullah, R.; Hangard, L.; Fabbro, S.; Lidman, C.; Paech, K.; Richard, J.; Kneib, J.P. Searching for supernovae in the multiply-imaged galaxies behind the gravitational telescope A370. Astron. Astrophys. 2018, 614, A103. [Google Scholar] [CrossRef] [Green Version]
- Treu, T.; Schmidt, K.B.; Brammer, G.B.; Vulcani, B.; Wang, X.; Bradač, M.; Dijkstra, M.; Dressler, A.; Fontana, A.; Gavazzi, R.; et al. The Grism Lens-Amplified Survey from Space (GLASS). I. Survey Overview and First Data Release. Astrophys. J. 2015, 812, 114. [Google Scholar] [CrossRef]
- Lotz, J.M.; Koekemoer, A.; Coe, D.; Grogin, N.; Capak, P.; Mack, J.; Anderson, J.; Avila, R.; Barker, E.A.; Borncamp, D.; et al. The Frontier Fields: Survey Design and Initial Results. Astrophys. J. 2017, 837, 97. [Google Scholar] [CrossRef]
- Kelly, P.L.; Rodney, S.A.; Treu, T.; Foley, R.J.; Brammer, G.; Schmidt, K.B.; Zitrin, A.; Sonnenfeld, A.; Strolger, L.G.; Graur, O.; et al. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens. Science 2015, 347, 1123–1126. [Google Scholar] [CrossRef] [Green Version]
- Kelly, P.L.; Brammer, G.; Selsing, J.; Foley, R.J.; Hjorth, J.; Rodney, S.A.; Christensen, L.; Strolger, L.G.; Filippenko, A.V.; Treu, T.; et al. SN Refsdal: Classification as a Luminous and Blue SN 1987A-like Type II Supernova. Astrophys. J. 2016, 831, 205. [Google Scholar] [CrossRef] [Green Version]
- Grillo, C.; Karman, W.; Suyu, S.H.; Rosati, P.; Balestra, I.; Mercurio, A.; Lombardi, M.; Treu, T.; Caminha, G.B.; Halkola, A.; et al. The Story of Supernova Refsdal Told by Muse. Astrophys. J. 2016, 822, 78. [Google Scholar] [CrossRef] [Green Version]
- Kelly, P.L.; Rodney, S.A.; Treu, T.; Strolger, L.G.; Foley, R.J.; Jha, S.W.; Selsing, J.; Brammer, G.; Bradač, M.; Cenko, S.B.; et al. Deja Vu All Over Again: The Reappearance of Supernova Refsdal. Astrophys. J. Lett. 2016, 819, L8. [Google Scholar] [CrossRef] [Green Version]
- Grillo, C.; Rosati, P.; Suyu, S.H.; Caminha, G.B.; Mercurio, A.; Halkola, A. On the Accuracy of Time-delay Cosmography in the Frontier Fields Cluster MACS J1149.5+2223 with Supernova Refsdal. Astrophys. J. 2020, 898, 87. [Google Scholar] [CrossRef]
- Stanishev, V.; Goobar, A.; Paech, K.; Amanullah, R.; Dahlén, T.; Jönsson, J.; Kneib, J.P.; Lidman, C.; Limousin, M.; Mörtsell, E.; et al. Near-IR search for lensed supernovae behind galaxy clusters. I. Observations and transient detection efficiency. Astron. Astrophys. 2009, 507, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Amanullah, R.; Goobar, A.; Clément, B.; Cuby, J.G.; Dahle, H.; Dahlén, T.; Hjorth, J.; Fabbro, S.; Jönsson, J.; Kneib, J.P.; et al. A Highly Magnified Supernova at z = 1.703 behind the Massive Galaxy Cluster A1689. Astrophys. J. Lett. 2011, 742, L7. [Google Scholar] [CrossRef] [Green Version]
- Goobar, A.; Amanullah, R.; Kulkarni, S.R.; Nugent, P.E.; Johansson, J.; Steidel, C.; Law, D.; Mörtsell, E.; Quimby, R.; Blagorodnova, N.; et al. iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova. Science 2017, 356, 291–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quimby, R.M.; Oguri, M.; More, A.; More, S.; Moriya, T.J.; Werner, M.C.; Tanaka, M.; Folatelli, G.; Bersten, M.C.; Maeda, K.; et al. Detection of the Gravitational Lens Magnifying a Type Ia Supernova. Science 2014, 344, 396–399. [Google Scholar] [CrossRef] [Green Version]
- Quimby, R.M.; Werner, M.C.; Oguri, M.; More, S.; More, A.; Tanaka, M.; Nomoto, K.; Moriya, T.J.; Folatelli, G.; Maeda, K.; et al. Extraordinary Magnification of the Ordinary Type Ia Supernova PS1-10afx. Astrophys. J. Lett. 2013, 768, L20. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, S.; Johansson, J.; Goobar, A.; Amanullah, R.; Mörtsell, E.; Cenko, S.B.; Cooray, A.; Fox, O.; Goldstein, D.; Kalender, R.; et al. Magnification, dust and time-delay constraints from the first resolved strongly lensed Type Ia supernova iPTF16geu. Mon. Not. R. Astron. Soc. 2019. [Google Scholar] [CrossRef]
- Petrushevska, T.; Okamura, T.; Kawamata, R.; Hangard, L.; Mahler, G.; Goobar, A. Prospects for Strongly Lensed Supernovae Behind Hubble Frontier Fields Galaxy Clusters with the James Webb Space Telescope. Astron. Rep. 2018, 62, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Foxley-Marrable, M.; Collett, T.E.; Vernardos, G.; Goldstein, D.A.; Bacon, D. The impact of microlensing on the standardization of strongly lensed Type Ia supernovae. Mon. Not. R. Astron. Soc. 2018, 478, 5081–5090. [Google Scholar] [CrossRef] [Green Version]
- Collaboration, L.S.; Marshall, P.; Anguita, T.; Bianco, F.B.; Bellm, E.C.; Brandt, N.; Clarkson, W.; Connolly, A.; Gawiser, E.; Ivezic, Z.; et al. Science-Driven Optimization of the LSST Observing Strategy. 2017. Available online: https://arxiv.org/abs/1708.04058 (accessed on 1 November 2020).
- Lochner, M.; Scolnic, D.M.; Awan, H.; Regnault, N.; Gris, P.; Mandelbaum, R.; Gawiser, E.; Almoubayyed, H.; Setzer, C.N.; Huber, S.; et al. Optimizing the LSST Observing Strategy for Dark Energy Science: DESC Recommendations for the Wide-Fast-Deep Survey. arXiv 2018, arXiv:1812.00515. [Google Scholar]
- Biswas, R.; Daniel, S.F.; Hložek, R.; Kim, A.G.; Yoachim, P. Enabling Catalog Simulations of Transient and Variable Sources Based on LSST Cadence Strategies. Astrophys. J. Suppl. Ser. 2020, 247, 60. [Google Scholar] [CrossRef] [Green Version]
- Lagattuta, D.J.; Richard, J.; Clément, B.; Mahler, G.; Patrício, V.; Pelló, R.; Soucail, G.; Schmidt, K.B.; Wisotzki, L.; Martinez, J.; et al. Lens modelling Abell 370: Crowning the final frontier field with MUSE. Mon. Not. R. Astron. Soc. 2017, 469, 3946–3964. [Google Scholar] [CrossRef]
- Kawamata, R.; Ishigaki, M.; Shimasaku, K.; Oguri, M.; Ouchi, M.; Tanigawa, S. Size–Luminosity Relations and UV Luminosity Functions at z = 6–9 Simultaneously Derived from the Complete Hubble Frontier Fields Data. Astrophys. J. 2018, 855, 4. [Google Scholar] [CrossRef] [Green Version]
- Mahler, G.; Richard, J.; Clément, B.; Lagattuta, D.; Schmidt, K.; Patrício, V.; Soucail, G.; Bacon, R.; Pello, R.; Bouwens, R.; et al. Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images. Mon. Not. R. Astron. Soc. 2018, 473, 663–692. [Google Scholar] [CrossRef]
- Zwicky, F. On the Frequency of Supernovae. Astrophys. J. 1938, 88, 529. [Google Scholar] [CrossRef]
- Vincenzi, M.; Sullivan, M.; Firth, R.E.; Gutiérrez, C.P.; Frohmaier, C.; Smith, M.; Angus, C.; Nichol, R.C. Spectrophotometric templates for core-collapse supernovae and their application in simulations of time-domain surveys. Mon. Not. R. Astron. Soc. 2019, 489, 5802–5821. [Google Scholar] [CrossRef]
- Alavi, A.; Siana, B.; Richard, J.; Stark, D.P.; Scarlata, C.; Teplitz, H.I.; Freeman, W.R.; Dominguez, A.; Rafelski, M.; Robertson, B.; et al. Ultra-faint Ultraviolet Galaxies at z ∼ 2 behind the Lensing Cluster A1689: The Luminosity Function, Dust Extinction, and Star Formation Rate Density. Astrophys. J. 2014, 780, 143. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.; Goobar, A.; Perlmutter, S. A Generalized K Correction for Type IA Supernovae: Comparing R-band Photometry beyond z = 0.2 with B, V, and R-band Nearby Photometry. Publ. ASP 1996, 108, 190. [Google Scholar] [CrossRef] [Green Version]
- Scannapieco, E.; Bildsten, L. The Type Ia Supernova Rate. Astrophys. J. Lett. 2005, 629, L85–L88. [Google Scholar] [CrossRef] [Green Version]
- Kalirai, J. Scientific discovery with the James Webb Space Telescope. Contemp. Phys. 2018, 59, 251–290. [Google Scholar] [CrossRef]
- Spergel, D.; Gehrels, N.; Baltay, C.; Bennett, D.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.S.; Greene, T.; Guyon, O.; et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report. arXiv 2015, arXiv:1503.03757. [Google Scholar]
- Bellm, E. The Zwicky Transient Facility. Available online: https://iopscience.iop.org/journal/1538-3873/page/Zwicky-Transient-Facility (accessed on 1 November 2020).
- Goldstein, D.A.; Nugent, P.E. How to Find Gravitationally Lensed Type Ia Supernovae. Astrophys. J. Lett. 2017, 834, L5. [Google Scholar] [CrossRef] [Green Version]
- Shu, Y.; Bolton, A.S.; Mao, S.; Kang, X.; Li, G.; Soraisam, M. Prediction of Supernova Rates in Known Galaxy-Galaxy Strong-lens Systems. Astrophys. J. 2018, 864, 91. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, D.A.; Nugent, P.E.; Goobar, A. Rates and Properties of Supernovae Strongly Gravitationally Lensed by Elliptical Galaxies in Time-domain Imaging Surveys. Astrophys. J. Suppl. Ser. 2019, 243, 6. [Google Scholar] [CrossRef]
- LSST Science Collaboration; Abell, P.A.; Allison, J.; Anderson, S.F.; Andrew, J.R.; Angel, J.R.P.; Armus, L.; Arnett, D.; Asztalos, S.J.; Axelrod, T.S.; et al. LSST Science Book, Version 2.0. arXiv 2009, arXiv:0912.0201. [Google Scholar]
- Bina, D.; Pelló, R.; Richard, J.; Lewis, J.; Patrício, V.; Cantalupo, S.; Herenz, E.C.; Soto, K.; Weilbacher, P.M.; Bacon, R.; et al. MUSE observations of the lensing cluster Abell 1689. Astron. Astrophys. 2016, 590, A14. [Google Scholar] [CrossRef]
- Strolger, L.G.; Dahlen, T.; Rodney, S.A.; Graur, O.; Riess, A.G.; McCully, C.; Ravindranath, S.; Mobasher, B.; Shahady, A.K. The rate of core collapse supernovae to redshift 2.5 from the candels and clash supernova surveys. Astrophys. J. 2015, 813, 93. [Google Scholar] [CrossRef] [Green Version]
- Heikkilä, T.; Tsygankov, S.; Mattila, S.; Eldridge, J.J.; Fraser, M.; Poutanen, J. Progenitor constraints for core-collapse supernovae from Chandra X-ray observations. Mon. Not. R. Astron. Soc. 2016, 457, 1107–1123. [Google Scholar] [CrossRef] [Green Version]
Cluster | N | N | z | Observed 10 yrs, Band i | Observed 10 yrs, Band z | Observed 10 yrs, Band y |
---|---|---|---|---|---|---|
Abell 1689 | 18 | 51 | 1.15–3.4 | 188 | 167 | 175 |
Abell 370 | 21 | 67 | 0.73–5.75 | 194 | 174 | 174 |
Abell 2744 | 12 | 40 | 1.03–3.98 | 198 | 181 | 170 |
Abell S1063 | 14 | 42 | 1.03–3.71 | 203 | 180 | 189 |
MACS J0416.1-2403 | 23 | 68 | 1.01–3.87 | 200 | 176 | 189 |
Total | 88 | 268 |
Cluster | N | N | ||
---|---|---|---|---|
Abell 1689 | 8 | 1.83 | 4 | 3.05 |
Abell 370 | 17 | 1.95 | 14 | 2.75 |
Abell 2744 | 5 | 1.04 | 0 | / |
AS1063 | 9 | 1.26 | 2 | 1.26 |
MACSJ0416 | 2 | 1.01 | 3 | 2.28 |
Total | 41 | 23 |
Cluster | N 10 yrs | N 10 yrs |
---|---|---|
Abell 1689 | ||
Abell 370 | ||
Abell 2744 | ||
Abell S1063 | ||
MACS J0416.1-2403 | ||
Total |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrushevska, T. Strongly Lensed Supernovae in Well-Studied Galaxy Clusters with the Vera C. Rubin Observatory. Symmetry 2020, 12, 1966. https://doi.org/10.3390/sym12121966
Petrushevska T. Strongly Lensed Supernovae in Well-Studied Galaxy Clusters with the Vera C. Rubin Observatory. Symmetry. 2020; 12(12):1966. https://doi.org/10.3390/sym12121966
Chicago/Turabian StylePetrushevska, Tanja. 2020. "Strongly Lensed Supernovae in Well-Studied Galaxy Clusters with the Vera C. Rubin Observatory" Symmetry 12, no. 12: 1966. https://doi.org/10.3390/sym12121966