# Point Cloud Coding Solutions, Subjective Assessment and Objective Measures: A Case Study

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Point Cloud Coding Solutions

## 3. Subjective Assessment of Point Cloud Quality

#### 3.1. Point Cloud Datasets

#### 3.2. Subjective Evaluation of Point Clouds

## 4. Objective Measures of Point Cloud Quality

- Full-reference (FR) measures: The full original and degraded visual data are used.
- Reduced-reference (RR) measures: Only some features from the original visual data information and degraded visual data information are used.
- No-reference (NR) measures: Only degraded visual data information are used.

- measures based on point cloud projections computed on the 2D spaces onto which the points are projected; and
- geometry- and/or attribute-based measures computed on the original 3D space in which the point cloud information is represented.

#### 4.1. Measures Based on Point Cloud Projections

#### 4.2. Geometry- and/or Attribute-Based Measures

- Firstly, for each point ${a}_{j}$ in the first point cloud, corresponding point ${b}_{i}$ in the second point cloud is identified (e.g., by the nearest neighbor algorithm).
- Error vector ${E}_{i,j}$ is defined (similarly as for the p2p measure) as the difference vector between the arbitrary point in the first point cloud ${a}_{j}$ to the corresponding nearest point in the second point cloud ${b}_{i}$.
- Unit normal vector ${N}_{j}$ is calculated for each point ${a}_{j}$ in the first point cloud.
- The error vector is projected onto unit normal vector, by calculating the dot product between error vector ${E}_{i,j}$ and normal vector ${N}_{j}$, obtaining projected error vector.
- Point-to-plane measure is calculated as the mean of the squared magnitudes of all projected error vectors.

_{p2pl}is presented in Equation (4), RMSE

_{p2pl}in Equation (5), and Hausdorff

_{p2pl}in Equation (6).

## 5. Common Methods for the Analysis and Presentation of the Results from Subjective Assessment

## 6. Point Cloud Subjective and Objective Quality Evaluation—A Case Study

#### 6.1. Inter-Laboratory Correlation Results

#### 6.2. Objective Quality Measures and Correlation with MOS Scores

_{1}((10)), C

_{2}((11)), and C

_{3}((12)) functions. The RMSE

_{p2p}measure was used as square root of MSE (Equation (3)), while Hausdorff

_{p2p}distance used (1). RMSE

_{p2pl}was calculated as Equation (5) and Hausdorff

_{p2pl}as Equation (6). PSNR values were calculated similarly to Equation (7), but with ${p}^{2}$ in numerator and p value being defined as the largest diagonal distance of a bounding box of the point cloud, as defined in [40]. From the results in Table 4 and Table 5 and Figure 9, it can be seen that the best performing objective measure is RMSE

_{p2pl}, in both UC and UNIN laboratories. The second best measure is RMSE

_{p2p}, also in both tested laboratories (Table 4 and Table 5 and Figure 10). Other objective measures have lower correlation scores.

_{1}as fitting function for PCC calculation, in both UC and UNIN laboratories. The second best is C

_{2}, also in both laboratories, being only slightly lower than case with C

_{1}. When comparing RMSE

_{p2p}with PSNR

_{RMSE,p2p}and RMSE

_{p2pl}with PSNR

_{RMSE,p2pl}, it can be noticed that PSNR obtained lower correlation than RMSE. PSNR was calculated using p value defined as the largest diagonal distance of a bounding box of the point cloud.

_{1}between PSNR

_{RMSE,p2pl}and MOS is around 0.94 and PCC_C

_{1}between PSNR

_{RMSE,p2p}and MOS is around 0.87, in both UC and UNIN laboratories. In addition, best results were obtained using C

_{1}as fitting function for PCC calculation, in both UC and UNIN laboratories, while C

_{2}produces slightly lower PCC correlation between PSNR and MOS.

## 7. Conclusions

_{p2pl}measure, in both laboratories, while second best was RMSE

_{p2p}measure, also for both laboratories subjective scores sets.

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Berger, M.; Tagliasacchi, A.; Seversky, L.M.; Alliez, P.; Guennebaud, G.; Levine, J.A.; Sharf, A.; Silva, C.T. A Survey of Surface Reconstruction from Point Clouds. Comput. Graph. Forum
**2017**, 36, 301–329. [Google Scholar] [CrossRef][Green Version] - The Stanford 3D Scanning Repository. Available online: http://graphics.stanford.edu/data/3Dscanrep/ (accessed on 13 September 2020).
- Curless, B.; Levoy, M. A Volumetric Method for Building Complex Models from Range Images. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH’96, New Orleans, LA, USA, 4–9 August 1996; Association for Computing Machinery: New York, NY, USA, 1996; pp. 303–312. [Google Scholar] [CrossRef][Green Version]
- Astola, P.; da Silva Cruz, L.A.; da Silva, E.A.; Ebrahimi, T.; Freitas, P.G.; Gilles, A.; Oh, K.J.; Pagliari, C.; Pereira, F.; Perra, C.; et al. JPEG Pleno: Standardizing a Coding Framework and Tools for Plenoptic Imaging Modalities. ITU J. CT Discov.
**2020**, 3, 1–15. [Google Scholar] [CrossRef] - Elseberg, J.; Borrmann, D.; Nüchter, A. One billion points in the cloud—An octree for efficient processing of 3D laser scans. Terrestrial 3D modelling. ISPRS J. Photogramm. Remote Sens.
**2013**, 76, 76–88. [Google Scholar] [CrossRef] - 3DTK—The 3D Toolkit. Available online: http://slam6d.sourceforge.net/ (accessed on 13 September 2020).
- Elseberg, J.; Magnenat, S.; Siegwart, R.; Nüchter, A. Comparison of nearest-neighbor-search strategies and implementations for efficient shape registration. J. Softw. Eng. Robot.
**2013**, 3, 2–12. [Google Scholar] [CrossRef] - Mammou, K.; Chou, P.A.; Flynn, D.; Krivokuća, M.; Nakagami, O.; Sugio, T. G-PCC Codec Description v2; Technical Report, ISO/IEC JTC1/SC29/WG11 Input Document N18189; MPEG: Marrakech, Marocco, 2019. [Google Scholar]
- Zakharchenko, V. V-PCC Codec Description; Technical Report, ISO/IEC JTC1/SC29/WG11 Input Document N18190; MPEG: Marrakech, Marocco, 2019. [Google Scholar]
- Sullivan, G.J.; Ohm, J.; Han, W.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits Syst. Video Technol.
**2012**, 22, 1649–1668. [Google Scholar] [CrossRef] - Valentin, V.; Mammou, K.; Kim, J.; Robinet, F.; Tourapis, A.; Su, Y. Proposal for Improved Occupancy Map Compression in TMC2; Technical Report, ISO/IEC JTC1/SC29/WG11 Input Document M46049; MPEG: Macau, China, 2018. [Google Scholar]
- Joshi, R.; Dawar, N.; Budagavi, M. On Occupancy Map Compression; Technical Report, ISO/IEC JTC1/SC29/WG11 Input Document M42639; MPEG: Marrakech, Marocco, 2019. [Google Scholar]
- Zerman, E.; Gao, P.; Ozcinar, C.; Smolic, A. Subjective and Objective Quality Assessment for Volumetric Video Compression. In Proceedings of the IS&T International Symposium on Electronic Imaging 2019: Image Quality and System Performance XVI Proceedings, Burlingame, CA, USA, 13–17 January 2019; pp. 323-1–323-7. [Google Scholar] [CrossRef]
- Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P.A.; Cohen, R.A.; Krivokuća, M.; Lasserre, S.; Li, Z.; et al. Emerging MPEG Standards for Point Cloud Compression. IEEE J. Emerg. Sel. Top. Circuits Syst.
**2019**, 9, 133–148. [Google Scholar] [CrossRef][Green Version] - Graziosi, D.; Nakagami, O.; Kuma, S.; Zaghetto, A.; Suzuki, T.; Tabatabai, A. An overview of ongoing point cloud compression standardization activities: Video-based (V-PCC) and geometry-based (G-PCC). APSIPA Trans. Signal Inf. Process.
**2020**, 9, e13. [Google Scholar] [CrossRef][Green Version] - He, L.; Zhu, W.; Xu, Y. Best-effort projection based attribute compression for 3D point cloud. In Proceedings of the 2017 23rd Asia-Pacific Conference on Communications (APCC), Perth, Australia, 11–13 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A. Panorama based point cloud reduction and registration. In Proceedings of the 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 November 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Houshiar, H.; Nüchter, A. 3D point cloud compression using conventional image compression for efficient data transmission. In Proceedings of the 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT), Sarajevo, Bosnia and Herzegovina, 29–31 October 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Quach, M.; Valenzise, G.; Dufaux, F. Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression. In Proceedings of the 2019 IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, 22–25 September 2019; pp. 4320–4324. [Google Scholar] [CrossRef][Green Version]
- Wang, J.; Zhu, H.; Ma, Z.; Chen, T.; Liu, H.; Shen, Q. Learned Point Cloud Geometry Compression. arXiv
**2019**, arXiv:1909.12037. [Google Scholar] - CloudCompare—3D Point Cloud and Mesh Processing Software—Open Source Project. Available online: http://www.cloudcompare.org (accessed on 6 February 2019).
- Brunnström, K.; Beker, S.A.; de Moor, K.; Sebastian Egger, A.D.; Garcia, M.N.; Lawlor, B. Qualinet White Paper on Definitions of Quality of Experience. 2013. Available online: https://hal.archives-ouvertes.fr/hal-00977812/document (accessed on 25 November 2020).
- Hoßfeld, T.; Heegaard, P.E.; Varela, M.; Möller, S. QoE beyond the MOS: An in-depth look at QoE via better metrics and their relation to MOS. Qual. User Exp.
**2016**, 1, 1–23. [Google Scholar] [CrossRef][Green Version] - ITU-R BT.500-14. BT.500: Methodologies for the Subjective Assessment of the Quality of Television Images; International Telecommunications Union: Geneva, Switzerland, 2019. [Google Scholar]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep Learning for 3D Point Clouds: A Survey. arXiv
**2020**, arXiv:1912.12033. [Google Scholar] [CrossRef] - Liu, W.; Sun, J.; Li, W.; Hu, T.; Wang, P. Deep Learning on Point Clouds and Its Application: A Survey. Sensors
**2019**, 19, 4188. [Google Scholar] [CrossRef] [PubMed][Green Version] - JPEG Committee. JPEG Pleno Database. Available online: https://jpeg.org/plenodb/ (accessed on 13 September 2020).
- D’Eon, E.; Harrison, B.; Myers, T.; Chou, P.A. 8i Voxelized Full Bodies—A Voxelized Point Cloud Dataset. Technical Report, ISO/IEC JTC1/SC29/WG1 Input Document M74006 and ISO/IEC JTC1/SC29/WG11 Input Document m40059, Geneva, Switzerland. 2017. Available online: https://jpeg.org/plenodb/pc/8ilabs/ (accessed on 13 September 2020).
- Johannes Schauer, A.N. Würzburg Marketplace. Available online: http://kos.informatik.uni-osnabrueck.de/3Dscans/ (accessed on 13 September 2020).
- Mekuria, R.; Blom, K.; Cesar, P. Design, Implementation, and Evaluation of a Point Cloud Codec for Tele-Immersive Video. IEEE Trans. Circuits Syst. Video Technol.
**2017**, 27, 828–842. [Google Scholar] [CrossRef][Green Version] - Zhang, J.; Huang, W.; Zhu, X.; Hwang, J. A subjective quality evaluation for 3D point cloud models. In Proceedings of the 2014 International Conference on Audio, Language and Image Processing, Shanghai, China, 7–9 July 2014; pp. 827–831. [Google Scholar] [CrossRef]
- Javaheri, A.; Brites, C.; Pereira, F.; Ascenso, J. Subjective and objective quality evaluation of 3D point cloud denoising algorithms. In Proceedings of the 2017 IEEE International Conference on Multimedia Expo Workshops (ICMEW), Hong Kong, China, 10–14 July 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Seufert, M.; Kargl, J.; Schauer, J.; Nüchter, A.; Hoßfeld, T. Different Points of View: Impact of 3D Point Cloud Reduction on QoE of Rendered Images. In Proceedings of the 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), Athlone, Ireland, 26–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- van der Hooft, J.; Vega, M.T.; Timmerer, C.; Begen, A.C.; De Turck, F.; Schatz, R. Objective and Subjective QoE Evaluation for Adaptive Point Cloud Streaming. In Proceedings of the 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), Athlone, Ireland, 26–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Cao, K.; Xu, Y.; Cosman, P. Visual Quality of Compressed Mesh and Point Cloud Sequences. IEEE Access
**2020**, 8, 171203–171217. [Google Scholar] [CrossRef] - Han, B.; Liu, Y.; Qian, F. ViVo: Visibility-aware mobile volumetric video streaming. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, MobiCom 2020, London, UK, 21–25 September 2020; pp. 137–149. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Wang, Z.; Bovik, A.C. Visual Perception and Quality Assessment. In Optical and Digital Image Processing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; Chapter 19; pp. 419–439. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process.
**2004**, 13, 600–612. [Google Scholar] [CrossRef][Green Version] - Torlig, E.; Alexiou, E.; Fonseca, T.; de Queiroz, R.; Ebrahimi, T. A novel methodology for quality assessment of voxelized point clouds; Applications of Digital Image Processing XLI. Proc. SPIE
**2018**, 10752, 107520I. [Google Scholar] [CrossRef] - Tian, D.; Ochimizu, H.; Feng, C.; Cohen, R.; Vetro, A. Geometric distortion metrics for point cloud compression. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 17–20 September 2017; pp. 3460–3464. [Google Scholar] [CrossRef]
- Cignoni, P.; Rocchini, C.; Scopigno, R. Metro: Measuring Error on Simplified Surfaces. Comput. Graph. Forum
**1998**, 17, 167–174. [Google Scholar] [CrossRef][Green Version] - MPEG 3DG. Common Test Conditions for Point Cloud Compression; ISO/IEC JTC1/SC29/WG11 Doc. N18474; MPEG: Geneva, Switzerland, 2019. [Google Scholar]
- Schwar, S. Emerging MPEG Standards for Point Cloud Compression. IEEE J. Emerg. Sel. Top. Circuits Syst.
**2019**, 9, 133–148. [Google Scholar] [CrossRef][Green Version] - Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens.
**2013**, 82, 10–26. [Google Scholar] [CrossRef][Green Version] - Hauke, J.; Tomasz, K. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaest. Geogr.
**2011**, 30, 87–93. [Google Scholar] [CrossRef][Green Version] - Daniel, W.W. Applied Nonparametric Statistics; Duxbury Advanced Series in Statistics and Decision Sciences; PWS-KENT: Boston, MA, USA, 1990. [Google Scholar]
- Sheikh, H.R.; Bovik, A.C. Image information and visual quality. IEEE Trans. Image Process.
**2006**, 15, 430–444. [Google Scholar] [CrossRef] - Larson, E.C.; Chandler, D.M. Most apparent distortion: Full-reference image quality assessment and the role of strategy. J. Electron. Imaging
**2010**, 19, 011006. [Google Scholar] - Perry, S.; Cong, H.P.; da Silva Cruz, L.A.; Prazeres, J.; Pereira, M.; Pinheiro, A.; Dumic, E.; Alexiou, E.; Ebrahimi, T. Quality evaluation of static point clouds encoded using MPEG codecs. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, UAE, 25–28 October 2020; pp. 3428–3432. [Google Scholar] [CrossRef]

**Figure 2.**Dragon point cloud: (

**a**) octree subdivision, five levels; and (

**b**) equirectangular projection, 1024 × 1024 pixels and 16 bit depth.

**Figure 3.**Point clouds from described datasets: (

**a**) Longdress (857,966 points); (

**b**) Phil (356,258 points); (

**c**) APR C1 002 (37,243,844 points); (

**d**) Biplane (about 106 million points); (

**e**) Arco Valentino (1,530,939 points); (

**f**) Ipanema (15,028,108 points); and (

**g**) Würzburg marketplace (approximately 135 million points).

**Figure 4.**Different types of objective measures: (

**a**) Full-Reference (FR); (

**b**) Reduced-Reference (RR); and (

**c**) No-Reference (NR).

**Figure 5.**Original point cloud visualization: (

**a**) Longdress; (

**b**) Loot; (

**c**) Redandblack; (

**d**) Ricardo10; (

**e**) Sarah9 and (

**f**) Soldier.

**Figure 6.**MOS results with CI values for six point clouds, UC laboratory: (

**a**) Longdress; (

**b**) Loot; (

**c**) Redandblack; (

**d**) Ricardo10; (

**e**) Sarah9 and (

**f**) Soldier.

**Figure 7.**MOS results with CI values for six point clouds, UNIN laboratory: (

**a**) Longdress; (

**b**) Loot; (

**c**) Redandblack; (

**d**) Ricardo10; (

**e**) Sarah9 and (

**f**) Soldier.

UC | UNIN | |
---|---|---|

Monitor | Sony KD-49X8005C | Sony KD-55X8505C |

Screen Diagonal | 49″ | 55″ |

Resolution | 3840 × 2160 pixels | 3840 × 2160 pixels |

Viewing distance | 1.8 m ± 30 cm | 1.5 m ± 15 cm |

Male Observers | 7 | 10 |

Female Observers | 8 | 5 |

Overall | 15 | 15 |

Age range (years) | 18–54 | 19–59 |

Average age (years) | 28 | 29 |

Number of outliers | 0 | 0 |

C_{1} | C_{2} | C_{3} | C_{4} | No Fit | |
---|---|---|---|---|---|

PCC | 0.9892 | 0.9886 | 0.9886 | 0.9864 | 0.9864 |

SROCC | 0.9823 | 0.9823 | 0.9823 | 0.9823 | 0.9823 |

KROCC | 0.8992 | 0.8992 | 0.8992 | 0.8992 | 0.8992 |

RMSE | 0.1832 | 0.1883 | 0.1886 | 0.2057 | 0.2186 |

OR | 0.0938 | 0.0417 | 0.0729 | 0.0625 | 0.0729 |

C_{1} | C_{2} | C_{3} | C_{4} | No Fit | |
---|---|---|---|---|---|

PCC | 0.9878 | 0.9868 | 0.9870 | 0.9864 | 0.9864 |

SROCC | 0.9831 | 0.9823 | 0.9823 | 0.9823 | 0.9823 |

KROCC | 0.9032 | 0.8992 | 0.8992 | 0.8992 | 0.8992 |

RMSE | 0.2001 | 0.2079 | 0.2062 | 0.2111 | 0.2186 |

OR | 0.1042 | 0.0833 | 0.0938 | 0.0833 | 0.0729 |

**Table 4.**PCC, SROCC, KROCC, RMSE and OR between UC and different objective measures (best values are bolded).

RMSE_{p2p} | PSNR_{RMSE,p2p} | RMSE_{p2pl} | PSNR_{RMSE,p2pl} | Haus_{p2p} | PSNR_{Haus,p2p} | Haus_{p2pl} | PSNR_{Haus,p2pl} | |
---|---|---|---|---|---|---|---|---|

PCC_C_{1} | 0.8705 | 0.6047 | 0.9426 | 0.6666 | 0.6038 | 0.5148 | 0.6215 | 0.4907 |

PCC_C_{2} | 0.8694 | 0.5722 | 0.9418 | 0.6016 | 0.5723 | 0.4844 | 0.5722 | 0.4699 |

PCC_C_{3} | 0.8400 | 0.5599 | 0.9218 | 0.5832 | 0.4604 | 0.4918 | 0.5573 | 0.4717 |

SROCC | 0.8207 | 0.5522 | 0.9172 | 0.5752 | 0.4532 | 0.4491 | 0.5391 | 0.4314 |

KROCC | 0.6265 | 0.3933 | 0.7379 | 0.4281 | 0.3268 | 0.3220 | 0.3896 | 0.3153 |

RMSE_C_{1} | 0.5684 | 0.9197 | 0.3856 | 0.8608 | 0.9204 | 0.9899 | 0.9047 | 1.0061 |

OR_C_{1} | 0.0238 | 0.2143 | 0 | 0.1667 | 0.2024 | 0.1786 | 0.1905 | 0.2143 |

**Table 5.**PCC, SROCC, KROCC, RMSE and OR between UC and different objective measures (best values are bolded).

RMSE_{p2p} | PSNR_{RMSE,p2p} | RMSE_{p2pl} | PSNR_{RMSE,p2pl} | Haus_{p2p} | PSNR_{Haus,p2p} | Haus_{p2pl} | PSNR_{Haus,p2pl} | |
---|---|---|---|---|---|---|---|---|

PCC_C_{1} | 0.8803 | 0.6542 | 0.9423 | 0.7038 | 0.5721 | 0.5071 | 0.5923 | 0.5115 |

PCC_C_{2} | 0.8763 | 0.6181 | 0.9397 | 0.6424 | 0.5504 | 0.4782 | 0.5500 | 0.4989 |

PCC_C_{3} | 0.8446 | 0.6129 | 0.9225 | 0.6354 | 0.4161 | 0.4828 | 0.5262 | 0.4795 |

SROCC | 0.8212 | 0.5888 | 0.9194 | 0.6196 | 0.4187 | 0.4755 | 0.5379 | 0.4726 |

KROCC | 0.6205 | 0.4298 | 0.7451 | 0.4715 | 0.3055 | 0.3325 | 0.3954 | 0.3391 |

RMSE_C_{1} | 0.5683 | 0.9059 | 0.4011 | 0.8510 | 0.9824 | 1.0324 | 0.9651 | 1.0293 |

OR_C_{1} | 0.1429 | 0.2857 | 0.0714 | 0.2738 | 0.3333 | 0.3333 | 0.2976 | 0.3452 |

UC | UNIN | |||
---|---|---|---|---|

PSNR_{RMSE,p2p} | PSNR_{RMSE,p2pl} | PSNR_{RMSE,p2p} | PSNR_{RMSE,p2pl} | |

PCC_C_{1} | 0.8712 | 0.9440 | 0.8802 | 0.9426 |

PCC_C_{2} | 0.8693 | 0.9439 | 0.8768 | 0.9421 |

PCC_C_{3} | 0.8421 | 0.9279 | 0.8478 | 0.9290 |

SROCC | 0.8207 | 0.9172 | 0.8212 | 0.9194 |

KROCC | 0.6265 | 0.7379 | 0.6205 | 0.7451 |

RMSE_C_{1} | 0.5669 | 0.3810 | 0.5684 | 0.4000 |

OR_C_{1} | 0.0238 | 0 | 0.1429 | 0.0714 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dumic, E.; da Silva Cruz, L.A.
Point Cloud Coding Solutions, Subjective Assessment and Objective Measures: A Case Study. *Symmetry* **2020**, *12*, 1955.
https://doi.org/10.3390/sym12121955

**AMA Style**

Dumic E, da Silva Cruz LA.
Point Cloud Coding Solutions, Subjective Assessment and Objective Measures: A Case Study. *Symmetry*. 2020; 12(12):1955.
https://doi.org/10.3390/sym12121955

**Chicago/Turabian Style**

Dumic, Emil, and Luis A. da Silva Cruz.
2020. "Point Cloud Coding Solutions, Subjective Assessment and Objective Measures: A Case Study" *Symmetry* 12, no. 12: 1955.
https://doi.org/10.3390/sym12121955