On the Differential Equation Governing Torqued Vector Fields on a Riemannian Manifold
Abstract
:1. Introduction
2. Preliminaries
3. Torqued Vector Fields on Spheres and Euclidean Spaces
4. Torqued Vector Fields on Compact Spaces
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Obata, M. Conformal transformations of Riemannian manifolds. J. Differ. Geom. 1970, 4, 311–333. [Google Scholar] [CrossRef]
- Obata, M. The conjectures about conformal transformations. J. Differ. Geom. 1971, 6, 247–258. [Google Scholar] [CrossRef]
- Li, T.; Viglialoro, G. Analysis and explicit solvability of degenerate tensorial problems. Bound. Value Probl. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Viglialoro, G.; Murcia, J. A singular elliptic problem related to the membrane equilibrium equations. Int. J. Comput. Math. 2013, 90, 2185–2196. [Google Scholar] [CrossRef]
- Pigola, S.; Rimoldi, M.; Setti, A.G. Remarks on non-compact gradient Ricci solitons. Math. Z. 2011, 268, 777–790. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.-Y. Some results on concircular vector fields and their applications to Ricci solitons. Bull. Korean Math. Soc. 2015, 52, 1535–1547. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S.; Al-Solamy, F. Conformal gradient vector fields on a compact Riemannian manifold. Colloq. Math. 2008, 112, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S. Jacobi-type vector fields and Ricci soliton. Bull. Math. Soc. Sci. Math. Roum. 2012, 55, 41–50. [Google Scholar]
- Deshmukh, S.; Khan, V.A. Geodesic vector fields and Eikonal equation on a Riemannian manifold. Indag. Math. 2019, 30, 542–552. [Google Scholar] [CrossRef]
- Deshmukh, S.; Turki, N.B. A note on φ-analytic conformal vector fields. Anal. Math. Phy. 2019, 9, 181–195. [Google Scholar] [CrossRef]
- Fialkow, A. Conformal geodesics. Trans. Amer. Math. Soc. 1939, 45, 443–473. [Google Scholar] [CrossRef]
- Ishihara, S. On infinitesimal concircular transformations. Kodai Math. Sem. Rep. 1960, 12, 45–56. [Google Scholar] [CrossRef]
- Mantica, C.A.; Molinari, L.G. Twisted Lorentzian manifolds, a characterization with torse-forming time-like unit vectors. Gen. Relativ. Gravit. 2017, 49, 51. [Google Scholar] [CrossRef] [Green Version]
- Mihai, A.; Mihai, I. Torse forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications. J. Geom. Phys. 2013, 73, 200–208. [Google Scholar] [CrossRef]
- Mikes, J.; Stepanova, E.; Vanzurova, E. Differential Geometry of Special Mappings; Palacky Univ. Press: Olomouc, Czech Republic, 2019. [Google Scholar]
- Mikes, J.; Rachunek, L. Torse-Forming vector fields in T-symmetric Riemannian spaces, Steps in Differential Geometry. In Proceedings of the Colloquium on Differential Geometry, Debrecen, Hungary, 25–30 July 2000; pp. 219–229. [Google Scholar]
- Yano, K. On torse forming direction in a Riemannian space. Proc. Imp. Acad. Tokyo 1944, 20, 340–345. [Google Scholar] [CrossRef]
- Chen, B.-Y. A simple characterization of generalized Robertson-Walker space-times. Gen. Relativ. Gravit. 2014, 46, 1833. [Google Scholar] [CrossRef] [Green Version]
- Mantica, C.A.; Molinari, L.G. Generalized Robertson-Walker space times, a survey. Int. J. Geom. Methods Mod. Phys. 2017, 14, 1730001. [Google Scholar] [CrossRef] [Green Version]
- Yano, K. Integral Formulas in Riemannian Geometry; Marcel Dekker: New York, NY, USA, 1970. [Google Scholar]
- Yano, K. Concircular geometry I. Concircular transformations. Proc. Imp. Acad. Tokyo 1940, 16, 195–200. [Google Scholar] [CrossRef]
- Takeno, H. Concircular scalar field in spherically symmetric space-times I. Tensor 1967, 20, 167–176. [Google Scholar]
- Chen, B.-Y. Rectifying submanifolds of Riemannian manifolds and torqued vector fields. Kragujev. J. Math. 2017, 41, 93–103. [Google Scholar] [CrossRef]
- Chen, B.-Y. Classification of torqed vector fields and its applications to Ricci solitons. Kragujev. J. Math. 2017, 41, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S.; Mikes, J.; Turki, N.B.; Vilcu, G.E. A note on geodesic vector fields. Mathematics 2020, 8, 1663. [Google Scholar] [CrossRef]
- Deshmukh, S.; Peska, P.; Turki, N.B. Geodesic vector fields on a Riemannian manifold. Mathematics 2020, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Petersen, P. Riemannian Geometry; Graduate Texts in Mathematics-171; Springer: New York, NY, USA, 1997. [Google Scholar]
- Lee, J.M. Introduction to Smooth Manifolds; GMT-218; Springer: New York, NY, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deshmukh, S.; Bin Turki, N.; Alodan, H. On the Differential Equation Governing Torqued Vector Fields on a Riemannian Manifold. Symmetry 2020, 12, 1941. https://doi.org/10.3390/sym12121941
Deshmukh S, Bin Turki N, Alodan H. On the Differential Equation Governing Torqued Vector Fields on a Riemannian Manifold. Symmetry. 2020; 12(12):1941. https://doi.org/10.3390/sym12121941
Chicago/Turabian StyleDeshmukh, Sharief, Nasser Bin Turki, and Haila Alodan. 2020. "On the Differential Equation Governing Torqued Vector Fields on a Riemannian Manifold" Symmetry 12, no. 12: 1941. https://doi.org/10.3390/sym12121941
APA StyleDeshmukh, S., Bin Turki, N., & Alodan, H. (2020). On the Differential Equation Governing Torqued Vector Fields on a Riemannian Manifold. Symmetry, 12(12), 1941. https://doi.org/10.3390/sym12121941