Multistage Estimation of the Scale Parameter of Rayleigh Distribution with Simulation
Abstract
:1. Introduction
2. Estimation Problems
2.1. Minimum Risk Point Estimation
2.2. Fixed-Width Confidence Interval
2.3. A Unified Decision Framework
3. Multistage Sampling
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (iv)
- ,
- (v)
- .
- (i)
- ,
- (ii)
- .
- (i)
- (ii)
- ,
- (iii)
3.1. Three-Stage Minimum Risk Point Estimation
3.2. Three-Stage Fixed-Width Confidence Interval
4. Simulation Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kodlin, D. A new response time distribution. Biometrics 1967, 23, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Rayleigh, F.R.S. On the resultant of a large number of vibrations of the same pitch and arbitrary phase. Lond. Edinb. Dublin Philos. Mag. 1880, 10, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Palovko, A.M. Fundamentals of Reliability Theory; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Gross, A.J.; Clark, V.A. Survival Distributions, Reliability Application in Biomedical Science; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Lee, E.T.; Wang, J.W. Statistical Methods for Survival Data Analysis, 3rd ed.; Wiley & Sons Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Dyer, D.D.; Whisenand, C.W. Best linear unbiased estimator of the parameter of the Rayleigh distribution: Part-II optimum theory for selected order statistics. IEEE Trans. Reliab. 1965, 60, 229–231. [Google Scholar] [CrossRef]
- Siddiqui, M.M. Some problems connected with Rayleigh distributions. J. Res. Natl. Bur. Stand. 1962, 66D, 167–174. [Google Scholar] [CrossRef]
- Hirano, K. Rayleigh Distributions; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Howlader, H.A.; Hossain, A. On Bayesian estimation and prediction from Rayleigh distribution based on type-II censored data. Commun. Stat. Theory Methods 1995, 24, 2251–2259. [Google Scholar] [CrossRef]
- Rosen, K.; Van Buskirk, R.; Garbesi, K. Wind energy potential of coastal Eritrea: An analysis of sparse wind data. Sol. Energy 1999, 66, 201–213. [Google Scholar] [CrossRef]
- Rehman, S.; Halawani, T.O.; Husain, T. Weibull parameters for wind speed distribution in Saudi Arabia. Sol. Energy 1994, 53, 473–479. [Google Scholar] [CrossRef]
- Celik, A.N. Energy output estimation for small-scale wind power generators using Weibull-representative wind data. J. Wind Eng. Ind. Aerodyn. 2003, 91, 693–707. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Keyhani, A.; Sefeedpari, P. Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renew. Sustain. Energy Rev. 2015, 42, 313–322. [Google Scholar] [CrossRef]
- Sinha, S.K.; Howlader, H.A. Credible and HPD intervals of the parameter and reliability of Rayleigh distribution. IEEE Trans. Reliab. 1983, 32, 217–220. [Google Scholar] [CrossRef]
- Ariyawansa, K.A.; Templeton, J.G.C. Structural inference on the parameter of the Rayleigh distribution from doubly censored samples. Stat. Hefte 1984, 25, 181–199. [Google Scholar] [CrossRef]
- Howlader, H.A. HPD prediction intervals for Rayleigh distribution. IEEE Trans. Reliab. 1985, 34, 121–123. [Google Scholar] [CrossRef]
- Lalitha, S.; Mishra, A. Modified maximum likelihood estimation for Rayleigh distribution. Commun. Stat. Theory Methods 1996, 25, 389–401. [Google Scholar] [CrossRef]
- Elfattah, A.M.; AbdHassan, A.S.; Ziedan, D.M. Efficiency of maximum likelihood estimators under different censored sampling schemes for Rayleigh Distribution. Interstat Electron. J. 2006, 1, 1–16. [Google Scholar]
- Dey, S.; Das, M.K. A note on prediction interval for a Rayleigh distribution: Bayesian approach. Am. J. Math. Manag. Sci. 2007, 27, 43–48. [Google Scholar] [CrossRef]
- Dey, S. Comparison of Bayes estimators of the parameter and reliability function for Rayleigh distribution under different loss functions. Malays. J. Math. Sci. 2009, 3, 249–266. [Google Scholar]
- Dey, S.; Dey, T. Bayesian estimation of the parameter and reliability of a Rayleigh distribution using records. Model Assist. Stat. Appl. 2012, 7, 81–90. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1994; Volume 1, ISBN 0-471-58495-9. [Google Scholar]
- Shannon, C.E. Mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Hall, P. Asymptotic theory and triple sampling of sequential estimation of a mean. Ann. Stat. 1981, 9, 1229–1238. [Google Scholar] [CrossRef]
- Degroot, M.H. Optimal Statistical Decisions; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Chow, Y.S.; Yu, K.F. The performance of a sequential procedure for the estimation of the mean. Ann. Stat. 1981, 9, 189–198. [Google Scholar] [CrossRef]
- Martinsek, A.T. Negative regret, optional stopping and the elimination of outliers. J. Am. Stat. Assoc. 1988, 83, 160–163. [Google Scholar] [CrossRef]
- Hamdy, H.I. Remarks on the asymptotic theory of triple stage estimation of the normal mean. Scand. J. Stat. 1988, 15, 303–310. [Google Scholar]
- Dantzig, G.B. On the Non-existence of tests of student’s hypothesis having power function independent of σ. Ann. Math. Stat. 1940, 11, 186–192. [Google Scholar] [CrossRef]
- Stein, C. A two-sample test for a linear hypothesis whose power is independent of the variance. Ann. Math. Stat. 1945, 16, 243–258. [Google Scholar] [CrossRef]
- Stein, C. Some problems in sequential estimation (abstract). Econometrica 1949, 17, 77–78. [Google Scholar]
- Seelbinder, B.M. On Stein’s two stage sampling scheme. Ann. Math. Stat. 1953, 24, 640–900. [Google Scholar] [CrossRef]
- Cox, D.R. Estimation by double sampling. Biometrika 1952, 39, 217–227. [Google Scholar] [CrossRef]
- Anscombe, F.J. Sequential estimation. J. R. Stat. Soc. 1953, 15, 1–21. [Google Scholar] [CrossRef]
- Robbins, H. Sequential Estimation of the Mean of a Normal Population. Probability and Statistics (Harald Cramer Volume); Almquist and Wiksell: Uppsala, Sweden, 1959; pp. 235–245. [Google Scholar]
- Chow, Y.S.; Robbins, H. On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Stat. 1965, 36, 1203–1212. [Google Scholar] [CrossRef]
- Mukhopadhyay, N. A note on three-stage and sequential point estimation procedures for a normal mean. J. Seq. Anal. 1985, 4, 311–319. [Google Scholar] [CrossRef]
- Mukhopadhyay, N. Sequential estimation problems for negative exponential populations. Commun. Stat. Theory Methods 1988, 17, 2471–2506. [Google Scholar] [CrossRef]
- Mukhopadhyay, N. Some properties of a three-stage procedure with applications in sequential analysis. Sankhya 1990, 52, 218–231. [Google Scholar]
- Mukhopadhyay, N.; Hamdy, H.I.; AlMahmeed, M.; Costanza, M.C. Three stage point estimation procedures for a normal mean. J. Seq. Anal. 1987, 6, 21–36. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Mauromoustakos, A. Three stage estimation procedures of the negative exponential distribution. Metrika 1987, 34, 83–93. [Google Scholar] [CrossRef]
- Hamdy, H.I.; Pallotta, W.J. Triple sampling procedure for estimating the scale parameter of Pareto distribution. Commun. Stat. Theory Methods 1987, 16, 2155–2164. [Google Scholar] [CrossRef]
- Hamdy, H.I.; Mukhopadhyay, N.; Costanza, M.C.; Son, M.S. Triple stage point estimation for the exponential location parameter. Ann. Inst. Stat. Math. 1988, 40, 785–797. [Google Scholar] [CrossRef]
- Hamdy, H.I.; AlMahmeed, M.; Nigm, A.; Son, M.S. Three stage estimation for the exponential location parameters. Metron 1989, 47, 279–294. [Google Scholar]
- Mukhopadhyay, N.; Padmanabhan, A.R. A note on three-stage confidence intervals for the difference of locations: The exponential case. Metrika 1993, 40, 121–128. [Google Scholar] [CrossRef]
- Takada, Y. Three stage estimation procedure of the multivariate normal mean. Sankhya 1993, 55, 124–129. [Google Scholar]
- Hamdy, H.I. Performance of fixed width confidence intervals under type II errors: The exponential case. S. Afr. Stat. J. 1997, 31, 259–269. [Google Scholar]
- AlMahmeed, M.; Hamdy, H.I. Sequential estimation of linear models in three stages. Metrika 1990, 37, 19–36. [Google Scholar] [CrossRef]
- AlMahmeed, M.; AlHessainan, A.; Son, M.S.; Hamdy, H.I. Three stage estimation for the mean of a one-parameter exponential family. Korean Commun. Stat. 1998, 5, 539–557. [Google Scholar]
- Costanza, M.C.; Hamdy, H.I.; Haugh, L.D.; Son, M.S. Type II error performance of triple sampling fixed precision confidence intervals for the normal mean. Metron 1995, 53, 69–82. [Google Scholar]
- Yousef, A.; Kimber, A.; Hamdy, H.I. Sensitivity of Normal-Based Triple sampling sequential point estimation to the normality assumption. J. Stat. Plan. Inference 2013, 143, 1606–1618. [Google Scholar] [CrossRef] [Green Version]
- Yousef, A.S. Construction a three-stage asymptotic coverage probability for the mean using Edgeworth second order approximation. In Selected Papers on the International Conference on Mathematical Sciences and Statistics 2013; Springer: Singapore, 2014; pp. 53–67. [Google Scholar] [CrossRef]
- Hamdy, H.I.; Son, S.M.; Yousef, S.A. Sensitivity analysis of multistage sampling to departure of an underlying distribution from normality with computer simulations. J. Seq. Anal. 2015, 34, 532–558. [Google Scholar] [CrossRef]
- Yousef, A. A Note on a three-stage sequential confidence interval for the mean when the underlying distribution departs away from normality. Int. Appl. Math. Stat. 2018, 57, 57–69. [Google Scholar]
- Yousef, A.; Hamdy, H. Three-stage estimation for the mean and variance of the normal distribution with application to inverse coefficient of variation. Mathematics 2019, 7, 831. [Google Scholar] [CrossRef] [Green Version]
- Yousef, A.; Hamdy, H. Three-stage sequential estimation of the inverse coefficient of variation of the normal distribution. Computation 2019, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Yousef, A. Performance of three-stage sequential estimation of the inverse coefficient of variation under type II error probability: A Monte Carlo simulation study. Front. Phys. 2020. [Google Scholar] [CrossRef]
- Liu, W. A k-stage sequential sampling procedure for estimation of a normal mean. J. Stat. Plan. Inference 1995, 65, 109–127. [Google Scholar] [CrossRef]
- Son, M.S.; Haugh, H.I.; Hamdy, H.I.; Costanza, M.C. Controlling type II error while constructing triple sampling fixed precision confidence intervals for the normal mean. Ann. Inst. Stat. Math. 1997, 49, 681–692. [Google Scholar] [CrossRef]
- Tahir, M. Sequential estimation of the square of the Rayleigh parameter. J. Math. Stat. 2014, 10, 275–280. [Google Scholar] [CrossRef]
- Wald, A. Sequential Analysis; Wiley: New York, NY, USA, 1947. [Google Scholar]
- Anscombe, F.J. Large sample theory of sequential estimation. Math. Proc. Camb. Philos. Soc. 1952, 48, 600–607. [Google Scholar] [CrossRef]
- Ghosh, M.; Mukhopadhyay, N. Consistency and asymptotic efficiency of two-stage and sequential estimation procedures. Sankhya 1981, 43, 220–227. [Google Scholar]
- Simon, G. On the cost of not knowing the variance when making a fixed-width confidence interval for the mean. Ann. Math. Stat. 1968, 39, 1946–1952. [Google Scholar] [CrossRef]
Distribution Characteristic | Mathematical Representation | Three Stage Point Estimate |
---|---|---|
The Mode | ||
The Median | ||
Reliability at time | ||
Hazard Function at time | ||
Entropy, |
25 | 50 | 100 | 150 | 200 | 250 | 300 | 400 | 500 | |
---|---|---|---|---|---|---|---|---|---|
22.79 | 48.84 | 98.95 | 148.75 | 198.82 | 248.68 | 298.89 | 399.10 | 499.04 | |
0.040 | 0.049 | 0.069 | 0.085 | 0.099 | 0.110 | 0.121 | 0.141 | 0.156 | |
9.588 | 9.859 | 9.944 | 9.962 | 9.970 | 9.975 | 9.981 | 9.987 | 9.989 | |
0.006 | 0.004 | 0.002 | 0.002 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | |
12.537 | 12.537 | 12.537 | 12.485 | 12.495 | 12.519 | 12.521 | 12.527 | 12.529 | |
0.010 | 0.010 | 0.010 | 0.004 | 0.003 | 0.003 | 0.003 | 0.002 | 0.002 | |
6.281 | 6.459 | 6.515 | 6.526 | 6.532 | 6.535 | 6.539 | 6.543 | 6.544 | |
0.004 | 0.003 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | |
10.795 | 11.111 | 11.209 | 11.228 | 11.230 | 11.232 | 11.225 | 11.212 | 11.188 | |
0.007 | 0.005 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | |
3.1932 | 3.2262 | 3.237 | 3.240 | 3.241 | 3.241 | 3.242 | 3.243 | 3.243 | |
0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
−27.21 | −51.16 | −101.1 | −80.27 | −148.79 | −85.89 | −165.37 | −169.95 | −178.12 | |
0.8823 | 0.927 | 0.940 | 0.942 | 0.944 | 0.946 | 0.948 | 0.945 | 0.949 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousef, A.; Hassan, E.E.H.; Amin, A.A.; Hamdy, H.I. Multistage Estimation of the Scale Parameter of Rayleigh Distribution with Simulation. Symmetry 2020, 12, 1925. https://doi.org/10.3390/sym12111925
Yousef A, Hassan EEH, Amin AA, Hamdy HI. Multistage Estimation of the Scale Parameter of Rayleigh Distribution with Simulation. Symmetry. 2020; 12(11):1925. https://doi.org/10.3390/sym12111925
Chicago/Turabian StyleYousef, Ali, Emad E. H. Hassan, Ayman A. Amin, and Hosny I. Hamdy. 2020. "Multistage Estimation of the Scale Parameter of Rayleigh Distribution with Simulation" Symmetry 12, no. 11: 1925. https://doi.org/10.3390/sym12111925
APA StyleYousef, A., Hassan, E. E. H., Amin, A. A., & Hamdy, H. I. (2020). Multistage Estimation of the Scale Parameter of Rayleigh Distribution with Simulation. Symmetry, 12(11), 1925. https://doi.org/10.3390/sym12111925