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Abstract: This paper considers sequentially two main problems. First, we estimate both the mean
and the variance of the normal distribution under a unified one decision framework using Hall’s
three-stage procedure. We consider a minimum risk point estimation problem for the variance
considering a squared-error loss function with linear sampling cost. Then we construct a confidence
interval for the mean with a preassigned width and coverage probability. Second, as an application,
we develop Fortran codes that tackle both the point estimation and confidence interval problems
for the inverse coefficient of variation using a Monte Carlo simulation. The simulation results show
negative regret in the estimation of the inverse coefficient of variation, which indicates that the
three-stage procedure provides better estimation than the optimal.
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1. Introduction

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed IID random variables
from a normal distribution with mean µ ∈ < and variance σ2

∈ <
+, both µ and σ2 are unknown.

Assume further that a random sample of size n(≥ 2) from the normal distribution becomes available
then we propose to estimate µ and σ2 by the corresponding sample measures Xn and S2

n, respectively.
It is a common practice, over the last decays, to treat each problem separately, where we consider one
decision framework for each inference problem of the mean or the variance.

The objective in this paper is to combine the inference of both problems under one decision
framework in order to achieve maximal use of the available sample information to handle these
problems simultaneously. Given pre-defined α, 0 < α < 1 and d(> 0), where (1− α) is the confidence
coefficient and 2d is the fixed-width of the interval, we want to construct a fixed-width (= 2d) confidence
interval for the mean µ whose confidence coefficient is at least the nominal value 100(1− α)%, where
at the same time, we will be able to use the same available data to estimate the population variance σ2

under squared-error loss function with linear sampling cost. Hence, we combine both optimal sample
sizes in one decision rule to propose the three-stage sampling decision framework.

Therefore, the optimal sample size required to construct a fixed-width confidence interval for µ
whose coverage probability is least the nominal value 100(1− α)% must satisfy the following:

n∗con f = (a/d)2σ2 (1)
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where a is the upper (α/2)% critical point of the standard normal distribution N(0, 1). For more
details about Equation (1), see Mukhopadhyay and de Silva ([1]; chapter 6, p. 97).

1.1. Minimum Risk Estimation

In the literature of sequential point estimation problems, one may consider several types of
loss functions such as the squared-error loss function, the absolute-error loss function, the linex-loss
function and others. It was shown that the commonly used one is the squared-error loss function due
to its simplicity in mathematical computations; see, for example, Degroot [2]. Therefore, we write the
loss incurred in estimating σ2 by the corresponding sample measure S2

n as

Ln(A) = A
(
S2

n − σ
2
)2
+ cn (2)

where A > 0 is a known constant and c is the known cost per unit sample observation. We will elaborate
on the determination of A in the following lines. Now, the risk corresponding to Equation (2) is

Rn(A) = 2A(n− 1)−1σ4 + cn ≈ 2Aσ4/n + cn, (3)

Thus, the minimum value of n that minimizes the risk in Equation (3) is

n ≥ n∗point =
√

2A/c σ2 (4)

moreover, the associated minimum risk is

Rn∗(A) = 2cn∗ (5)

The value of n∗ in Equation (4) is called the optimal sample size required to generate a point
estimate for σ2 under Equation (2) while Equation (5) is the minimum risk obtained if σ2 is known.

1.2. A Unified One Decision Framework

If we want to combine both the confidence interval estimation and the point estimation in one
decision framework, we have to have the constant A = (1/2)

(
a4/d4

)
c to perform both confidence and

point estimation in one decision rule. Careful investigation of the constant A =
(
n∗/2σ4

)
(cn∗) provided

the statistical interpretation, that is cn∗ is the cost of optimal sampling while
(
n∗/2σ4

)
represents the

optimal information; in other words, it is the amount of information required to explore a unit of
variance in order to achieve minimum risk. Thus A is the cost of perfect information, and it is contrary to
what has been said in the literature—that it is the cost of estimation.

Therefore, we proceed to use the following optimal sample size, to perform the required inference,

n ≥ n∗ =
(
a2/d2

)
σ2 = ξσ2, ξ = a2/d2 (6)

Since σ2 in Equation (6) is unknown, then no fixed sample size procedure can estimate the mean
µ, independent of σ2; see Dantzig [3]. Therefore, we resort to a triple sampling sequential procedure to
achieve the previously required goals. Henceforth, we continue to use the asymptotic sample size
defined in Equation (6) to propose the following triple sampling procedure to estimate the unknown
population mean µ and the unknown population variance σ2 via estimation of n∗.

2. Three-Stage Estimation of the Mean and Variance

In his seminal work, Hall [4] introduced the idea of sampling in three stages to tackle several
problems in sequential estimation. He combined the asymptotic characteristics of one-by-one purely
sequential sampling procedures of Anscombe [5], Robbins [6], and Chow and Robbins [7] and the
operational saving made possible by Stein [8], and Cox [9] group sampling.
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From 1965 until the early 1980s, the research in sequential estimation was mainly devoted
to two types of sequential sampling procedures—the two-stage procedure, which satisfies the
operational savings, and the one-by-one purely sequential procedure that satisfies the asymptotic
efficiency. The objective was to use these methods under non-normal distributions. For brevity,
see Mukhopadhyay [10], Mukhopadhyay and Hilton [11], Mukhopadhyay and Darmanto [12],
Mukhopadhyay and Hamdy [13], Ghosh and Mukhopadhyay [14], Mukhopadhyay and Ekwo [15],
Sinha and Mukhopadhyay [16], Zacks [17], and Khan [18]. For a complete list of references, see Ghosh,
Mukhopadhyay, and Sen [19].

In the early 1980s, Hall [4,20] considered the normal distribution with an unknown finite mean
and an unknown finite variance. His objective was to construct a confidence interval for the mean with
a pre-assigned fixed-width and coverage probability. We will describe Hall’s three-stage procedure in
Section 2.1.

Since the publication of Hall’s paper, research in multistage sampling has extended Halls
results in several directions. Some have utilized the triple sampling technique to generate inference
for other distributions, others have tried to improve the quality of inference such as protecting
the inference against type II error probability, studying the characteristic operating curve, or/and
discussing the sensitivity of triple sampling when the underlying distribution departs away from
normality. For more details see Mukhopadhyay [21–23], Mukhopadhyay et al. [24], Mukhopadhyay
and Mauromoustakos [25], Hamdy and Palotta [26], Hamdy et al. [27], Hamdy [28], Hamdy et
al. [29], Lohr [30], Mukhopadhyay and Padmanabhan [31], Takada [32], Hamdy et al. [33], Hamdy [34],
Al-Mahmeed and Hamdy [35], AlMahmeed et al. [36], Costanzo et al. [37], Yousef et. al. [38], Yousef [39],
Hamdy et al. [40] and Yousef [41]. Liu [42] used Hall’s results to tackle hypothesis-testing problems for
the mean of the normal distribution while Son et al. [43] used the three-stage procedure to tackle the
problem of testing hypotheses concerning shifts in the population normal mean with controlled Type
II error probability.

2.1. Three-Stage Sampling Procedure

As the name suggests, an inference in triple sampling is performed in three consecutive stages—the
pilot phase, the main study phase, and the fine-tuning phase.

The Pilot Phase: In the pilot study phase, a random sample of size m(≥ 2) from the population
say, (X1, . . . , Xm) to initiate sample measures, Xm for the population mean µ and Sm for the population

standard deviation σ, where Xm = m−1
m∑

i=1
Xi and S2

m = (m− 1)−1 m∑
i=1

(Xi −Xm)
2
.

The main Study Phase: In the main study phase, we only estimate a portion γ ∈ (0, 1) of n∗ to
avoid possible oversampling. In literature, γ is known as the design factor. Let [x] be the largest integer
≤ x and ξ as defined before we have

N1 = max
{
m,

[
γξS2

m

]
+ 1

}
(7)

If m ≥ N1 then we stop at this stage, otherwise we continue to sample an extra sample of size N1 −m,
say Xm+1, Xm+2, . . . , XN1 , then we update the sampling measures to XN1 and SN1 for the population’s
unknown parameters µ and σ, respectively. Hence, we proceed to define the fine-tuning phase.

The Fine-Tuning Phase: In the fine-tuning phase, the decision to stop or continue sampling is
taken according to the following stopping rule

N = max
{
N1,

[
ξS2

N1

]
+ 1

}
(8)

If N1 ≥ N then sampling is terminated at this stage, or else we continue to sample an additional
sample of size N −N1, say XN1+1, XN1+2, . . . , XN. Hence, we augment the previously collected N1

samples with the new N−N1 to update the sample estimates to XN and SN for the unknown parameters
µ and σ. Upon terminating the sampling process, we propose to estimate the unknown population
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mean µ by the corresponding triple sampling confidence interval IN =
(
XN − d, XN + d

)
and the

unknown population variance σ2 by the corresponding triple sampling point estimate S2
N.

The asymptotic results in this paper are developed under the Assumption (A) set forward by
Hall [20] to develop a theory for the triple sampling procedure. That is,

Assumption (A) Let ξ(> 0) such that ξ(m)→∞ , limsup(m/ξ(m)) < γσ2, and ξ(m) = O
(
mk

)
,

k > 1.
Preliminaries: Recall the sample variance S2

n = (n− 1)−1 n∑
i=1

(Xi −Xn)
2

for all n ≥ 2, and consider

the following Helmert’s transformation to the original normal random variables X1, . . . , Xn, to write
S2

n as an average of IID random variables for all n ≥ 2. Now, let Zi = (Xi − µ)/σ for i = 1, 2, . . . , n,

and write Wi = (i(i + 1))−1/2

 i∑
j=1

Z j − i2Zi+1

 for i = 1, 2, . . . , n − 1 and Wn = n−1
n∑

j=1
Z j. They Wi

′s

are IID N(0, 1) for all i = 1, 2, . . . , n. Let Vi = σ2W2
i , then the random variables V1, V2, . . . , Vn are IID

random variables each distributed as σ2χ2(1). Which means
n∑

j=2
V j ∼ σ

2χ2(n− 1). From Lemma 2 of

Robbins [6], it follows that S2
n and Vn = (n− 1)−1 n∑

i=2
Vi are identically distributed for all n ≥ 2. That is,

S2
n

D
= Vn, for all n ≥ 2.

We continue to use the representation of Vn instead of S2
n for all n ≥ 2 to develop the asymptotic

theory for both the main study phase and the fine-tuning phase.

2.2. The Asymptotic Characteristics of the Main Study Phase

Under Assumption (A), we have
As ξ→∞ , P

(
N = [ξS2

N1
] + 1

)
= P

(
N = [ξVN1 ] + 1

)
→ 1 a.s and as m→∞ , N1/γn∗ → 1 , in

probability likewise m/γn∗ → 1 in probability. While, from the Anscombe [5] Central Limit Theorem,
we have as ξ→∞ ,

√
N1

(
XN1 − µ

)
→ N

(
0, σ2

)
and

√
N1

(
S2

N1
− σ2

)
→ N

(
0, 2σ4

)
in distribution.

From Theorem 1 of Yousef et al. [38] as ξ→∞ we have

(i) E
(
XN1

)
= µ+ o

(
ξ−1

)
(ii) E

(
X

2
N1

)
= µ2 + σ2(γn∗)−1 + o

(
ξ−2

)
(iii) Var

(
XN1

)
= σ2(γn∗)−1 + o

(
ξ−2

) (9)

Theorem 1. Under Assumption (A) and using Equation (7), we can show for any real k, as ξ→∞

E
(
S2k

N1

)
= σ2k + k(k− 3)σ2k(γn∗)−1 + o

(
ξ−1

)

Proof. Since S2
N1

and VN1 are identically distributed, we write

E
(
S2k

N1

)
= E

(
V

k
N1

)
= E

(N1 − 1)−1
N1−1∑
j=1

V j


k

Conditioning on the σ− f ield generated by Vi(i = 1, 2, 3, . . . , m− 1) we have

E
(
V

k
N1

)
= E

(N1 − 1)−kE

m−1∑
j=1

V j +

N1−1∑
j=m

V j


k

|V1, V2, . . . , Vm−1


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By using binomial expansion, it follows

E
(
V

k
N1

)
= E

(N1 − 1)−k
∞∑

j=0

λ(k, j)

m−1∑
j=1

V j


k− j

E

N1−1∑
j=m

V j


j

|V1, V2, . . . , Vm−1


where λ(k, j) =

j∏
t=1

(k−t+1)

j! for j = 1, 2, . . . and λ(k, 0) = 1. Conditioning on the σ −

f ield generated by Vi(i = 1, 2, 3, . . . , m− 1) that is

N1−1∑
j=m

V j/σ2
|V1, V2, . . . , Vm−1

 ∼ χ2(N1 −m).

It follows E

N1−1∑
j=m

V j/σ2
|V1, V2, . . . , Vm−1

 j

= 2 j Γ( j+(N1−m)/2)
Γ((N1−m)/2) where Γ(x) =

∞∫
0

tx−1e−t dt and hence

E

N1−1∑
j=m

V j|V1, V2, . . . , Vm−1

 j

= (N1 −m) jσ2 j
(
1 + O

(
N−1

1

))
. �

Further simplifications similar to those given in Hamdy [28], we get

E
(
S2k

N1

)
= σ2kE

1 +
1

N1 − 1

m−1∑
i=1

Yi


k

+ o
(
ξ−1

)
where Yi =

(
Vi − σ

2
)
/σ2 are IID with E(Yi) = 0 and Var(Yi) = 2.

By applying the first two terms of the infinite binomial series and taking the expectation, we get

E
(
S2k

N1

)
= σ2k + σ2kk E

(
1

N1−1

m−1∑
i=1

Yi

)
+ 1

2σ
2kk(k− 1)E

(
1

N1−1

m−1∑
i=1

Yi

)2

+ E(R(Y))

= σ2k + I + II
(10)

E(R(Y)) = M E
(

1
N1−1

m−1∑
i=1

Yi

)3

, where M is a generic constant. Since m− 1 ≤ N1 − 1 we have

E(R(Y)) = M E

 1
m− 1

m−1∑
i=1

Yi


3

= M(m− 1)3E
(
Vm − σ

2
)3

/(m− 1)3 = M E
(
Vm − σ

2
)3

= 0.

Consider I = σ2kkE
(

1
N1−1

m−1∑
i=1

Yi

)
and expand (N1 − 1)−1 around γn∗, and then take the expectation.

E
{
(N1 − 1)−1m−1∑

i=1
Yi

}
= 2(γn∗)−1E

(
m−1∑
i=1

Yi

)
− (γn∗)−2E

(
N1

m−1∑
i=1

Yi

)
+ (1/2)E

(
ρ−3

m−1∑
i=1

Yi(N1 − γn∗)2
)
,

where ρ is a random variable between N1 andγn∗. It is not hard to show that E
{

m−1∑
i=1

Yi(N1 − γn∗)2ρ−3
}
=

o
(
ξ−1

)
, we have omitted the proof for brevity.

Substituting for Yi =
(
Vi − σ

2
)
/σ2, we have

I = σ2kkσ(γn∗)−1(m− 1)E
(

Vm

σ2 − 1
)
− σ2kk

σ
2
(γn∗)−2(m− 1)γξ


E
(
V

2
m

)
σ2 − E

(
Vm

)+ o
(
ξ−1

)
It follows that

I = −
σ
γn∗

σ2kk + o
(
ξ−1

)
(11)
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Likewise, we recall the second term and expand (N1 − 1)−2 around γn∗, we get

II =
1
2
σ2kk(k− 1)E

 1
N1 − 1

m−1∑
i=1

Yi


2

= (γn∗)−1σ2kk(k− 1) (12)

Substituting Equations (11) and (12) into Equation (10), we get the result. The proof is complete.
As a particular case of Theorem 1, for k = 1/2, 1, 2 and k = 3 we have as ξ→∞ ,

(i) E
(
SN1

)
= σ− 5σ

4γn∗ + o
(
ξ−1

)
(ii) E

(
S2

N1

)
= σ2

−
2σ2

γn∗ + o
(
ξ−1

)
(iii) E

(
S4

N1

)
= σ4

−
2σ4

γn∗ + o
(
ξ−1

)
(iv) E

(
S6

N1

)
= σ6 + o

(
ξ−1

) (13)

while from the Equation (13) and the results of (ii) and (iii) we obtain

Var
(
S2

N1

)
= 2σ4(γn∗)−1 + o

(
ξ−1

)
(14)

The following Theorem 2 gives the second-order asymptotic expansion of the moments of a
real-valued continuously differentiable function of S2

N1
.

Theorem 2. Under Assumption (A) and let g(> 0) be a real-valued continuously differentiable function in a
neighborhood around σ2 such that sup

n>m
|g′′′ (n)| = O(|g′′′ (n∗)|), then

E
{
g
(
S2

N1

)}
= g

(
σ2

)
− 2σ2(γn∗)−1

{
g′

(
σ2

)
− (1/2)σ2g′′

(
σ2

)}
+ o

(
ξ−1

)

Proof. Taylor expansion of g
(
S2

N1

)
around σ2 provides,

g
(
S2

N1

)
= g

(
σ2

)
+

(
S2

N1
− σ2

)
g′

(
σ2

)
+ (1/2)

(
S2

N1
− σ2

)2
g′′

(
σ2

)
+ (1/6)

(
S2

N1
− σ2

)3
g′′′ (η),

where η is a random variable between S2
N1

and σ2. Now, taking the expectation all through we have,

E
(
g
(
S2

N1

))
= g

(
σ2

)
+ E

(
S2

N1
− σ2

)
g′

(
σ2

)
+ (1/2)E

(
S2

N1
− σ2

)2
g′′

(
σ2

)
+ (1/6)E

((
S2

N1
− σ2

)3
g′′′ (η)

)
,

From Equation (13), parts (ii) and (14), we have

E
(
g
(
S2

N1

))
= g

(
σ2

)
− 2σ2(γn∗)−1

{
g′

(
σ2

)
−

(
σ2/2

)
g′′

(
σ2

)}
+ (1/6)E

((
S2

N1
− σ2

)3
g′′′ (η)

)
,

However, (1/6)E
((

S2
N1
− σ2

)3
g′′′ (η)

)
≤ (1/6)E|S2

N1
− σ2
|
3sup

n≥m
|g′′′ (n)| = O

(
|ξ−1g′′′ (η)|

)
from

Equation (13), part (iv), and the assumption that g′′′ (·) is a bounded function. The proof is complete.
�

Corollary 1. Under Assumption (A) and let g(> 0), be a real-valued continuously differentiable function in a
neighborhood around σ such that sup

n>m
|g′′′ (n)| = O(|g′′′ (n∗)|) then

E
{
g
(
SN1

)}
= g(σ) + σ(4γn∗)−1{σg′′ (σ) − 5g′(σ)

}
+ o

(
ξ−1

)
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Proof. First, by using Taylor series expansion of the function g(·) around σ, we get

g
(
SN1

)
= g(σ) − g′(σ)

(
SN1 − σ

)
+

1
2

g′′ (σ)
(
SN1 − σ

)2
+

1
6

g′′′ (η)
(
SN1 − σ

)3

By taking the expectation all through we have

E
(
g
(
SN1

))
= g(σ) − g′(σ)E

(
SN1 − σ

)
+

1
2

g′′ (σ)E
(
SN1 − σ

)2
+

1
6

E
(
g′′′ (η)

(
SN1 − σ

)3
)

by using Equation (13), parts (i), (ii) and (iii) and the fact, that g′′′ (·) is bounded. The proof is complete.
As an especial case of Corollary 1, take f (t) = t−1, and f (t) = t−2 we obtain,

(i) E
(
S−1

N1

)
= σ−1 + 7σ−1(4γn∗)−1

(ii) E
(
S−2

N1

)
= σ−2 + 4σ−2(γn∗)−1 + o

(
ξ−1

)
(iii) var

(
S−1

N1

)
= σ−2(2γn∗)−1 + o

(
ξ−1

) (15)

This completes our first assertion regarding the asymptotic characteristics of the main-study phase.
In the following section, we find the asymptotic characteristics of the final random sample size. �

2.3. The Asymptotic Characteristics of the Fine-Tuning Phase

Asymptotic characteristics of the variable N are given in the following Theorem.

Theorem 3. Under Assumption (A) and using Equation (8), let h(> 0) be a real-valued continuously
differentiable function in a neighborhood around n∗ such that sup

n>m
|h′′′ (n)| = O|h′′′ (n∗)|. Then as ξ→∞

E
{
h(N)

}
= h(n∗) +

(1
2
− 2γ−1

)
h′(n∗) + γ−1n∗h′′ (n∗) + O

(
ξ2h′′′ (ξ)

)

Proof. We write N =
[
ξS2

N1

]
+ 1, except possibly on a set φ = (N1 < m) ∪

(
ξVN1 < γξVm + 1

)
of

measure zero. Therefore, for real r, we have

E(Nr) = E
([
ξS2

N1

]
+ 1

)r
+

∫
φ

Nr dp

= E
(([
ξS2

N1

]
+ 1

)
+ βN1

)r
+ o

(
ξr−1

)
provided that the rth moment exists, and βN1 = 1 −

{(
ξS2

N1

)
−

[
ξS2

N1

]}
, where [x] as defined before.

From Hall [4], as ξ→∞ , βN1 is an asymptotically uniform distribution.
Now, for r = 1, we have,

E(N) = E
(([
ξS2

N1

]
+ 1

))
+ E

(
βN1

)
+ o(1) = ξ

(
σ2
−

2σ2

γn∗ + o
(
ξ−1

)
+ 1

2 + o(1)
)
= ξσ2

− 2γ−1 + 1/2+o(1)
= n∗ − 2γ−1 + 1/2 + o(1)

(16)

Likewise, for r = 2, we have

E(N − n∗)2 = 2γ−1n∗ + O(ξ) (17)

For r = 3, we have
E|N − n∗|3 = O

(
ξ2

)
(18)

We turn to prove Theorem 3.
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First, write h(N) in Tayler series expansion as

E(h(N)) = h(n∗) + E(N − n∗)h′(n∗) +
1
2

E(N − n∗)2h′′ (n∗) +
1
6

E
(
(N − n∗)3h′′′ (ν)

)
where ν is a random variable between N and n∗. By using Equations (16)–(18) we have

E(h(N)) = h(n∗) +
(1

2
− 2σ2γ−1

)
h′(n∗) + 2σ2γ−1n∗h′′ (n∗) +

1
6

E
(
(N − n∗)3h′′′ (ν)

)
However, 1

6 E(N − n∗)3h′′′ (ν) ≤ 1
6 E|N − n∗|3sup

n>m
|h′′′ (n)| = O|ξ2h′′′ (ξ)| from Equation (18) since h(·)

and its derivatives are bounded. The proof is complete. �

Let N be defined as in Equation (8) and assume (A) holds, the asymptotic characteristics of the
fine-tuning phase as ξ→∞ we have (see Yousef et al. [38])

E
(
XN

)
= µ+ o

(
ξ−1

)
E
(
X

2
N

)
= µ2 + σ2/n∗ + o

(
ξ−1

)
Var

(
XN

)
= σ2/n∗ + o

(
ξ−2

)
Theorem 4. Under Assumption (A) and using Equation (8), we can show that for any real k and as ξ→∞

E
(
S2k

N

)
= σ2k +

σ2k

n∗
k(γk− γ− 2) + o

(
ξ−1

)

Proof. Write E
(
S2k

N

)
= E

(
V

k
N

)
, conditioning on the σ − f ield generated Vi(i = 1, 2, 3, . . . , N1 − 1),

we have

E
(
V

k
N

)
= E(N − 1)−1E

N1−1∑
i=1

Vi +
N−1∑
N1

Vi


k

|Vi(i = 1, 2, 3, . . . , N1 − 1)

Thus, we write the binomial expression as an infinite series and we get

E

(N − 1)−kE

N1−1∑
i=1

Vi +
N−1∑
N1

Vi

k

|Vi(i = 1, 2, 3, . . . , N1 − 1)


= E

(N − 1)−kE

 ∞∑i=1
λ(k, j)

(
N1−1∑
i=1

Vi

)k− jN−1∑
i=N1

Vi

 j|Vi(i = 1, 2, 3, . . . , N1 − 1)

,

where λ(k, j) =

j∏
t=1

(k−t+1)

j! for j = 1, 2, . . . and λ(k, 0) = 1.
Conditioning on the σ − f ield generated by Vi(i = 1, 2, . . . , N1 − 1) the random sumN−1∑

i=N1

Vi

|Vi(i = 1, 2, 3, . . . , N1 − 1) is distributed as σ2χ2-distribution with N − N1 degrees of

freedom. Therefore,

E

N−1∑
i=N1

Vi


j

|Vi(i = 1, 2, 3, . . . , N1 − 1) = σ2 j(N −N1)
j
(
1 + O

(
N−1

))
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Consequently, this yields

E
(
S2k

N

)
= σ2kE

1 +
1

N − 1

N1−1∑
i=1

Yi


k

+ o
(
ξ−1

)
(19)

Consider the first three terms in the expansion and the remainder term R(ξ)

E
(
S2k

N

)
= σ2k + σ2kkE

 1
N − 1

N1−1∑
i=1

Yi

+ (1
2

)
σ2kk(k− 1)E

 1
N − 1

N1−1∑
i=1

Yi


2

+ E(R(ξ)) (20)

where E(R(ξ)) = o
(
ξ−1

)
. Let us evaluate the second term σ2kkE

(
1

N−1

N1−1∑
i=1

Yi

)
, first expand (N − 1)−1

around n∗ using Taylor series (N − 1)−1 = n∗−1
− (N − n∗)n∗−2 + (1/2)(N − n∗)2ν−3, where ν is arandom

variable lies between N and n∗. Furthermore,

(N − 1)−1 = n∗−1
− ξ

(
VN1 − σ

2
)
n∗−2 + (1/2)ξ2

(
VN1 − σ

2
)2
ν−3,

= n∗−1
−

(
1

N1−1

N1−1∑
i=1

Yi

)
n∗−1 + (1/2)

(
1

N1−1

N1−1∑
i=1

Yi

)2

n∗2ν−3,

where we have used the fact that N ≈ ξ VN1 . Thus,

σ2kkE
(

1
N−1

N1−1∑
i=1

Yi

)
= n∗−1σ2kkE

(
N1−1∑
i=1

Yi

)
− n∗−1σ2kkE

(N1 − 1)−1
(

N1−1∑
i=1

Yi

)2+ 1
2 n∗2σ2kkE

ν−3(N1 − 1)−2
(

N1−1∑
i=1

Yi

)3 (21)

However, the first term in (21) n∗−1σ2kkE
(

N1−1∑
i=1

Yi

)
= 0, by Wald’s [44] first equation.

For the second term in Equation (21), n∗−1σ2kkE

(N1 − 1)−1
(

N1−1∑
i=1

Yi

)2, conditioning on theσ− f ield

generated by Vi(i = 1, 2, . . . , m− 1), we have

n∗−1σ2kkE

(N1 − 1)−1
(

N1−1∑
i=1

Yi

)2 = σ2kkn∗−1E

(N1 − 1)−1E

(m−1∑
i=1

Yi +
N1−1∑
i=m

Yi

)2|Vi(i = 1, 2, 3, . . . , m− 1)


Expanding the binomial term and taking the expectation conditional on Vi(i = 1, 2, . . . , m− 1)

then expanding (N1 − 1)−1 in Taylor series we obtain

n∗−1σ2kkE

(N1 − 1)−1

N1−1∑
i=1

Yi


2 = 2kσ2kn∗−1 + o

(
ξ−1

)

Now, recall the third term
(

1
2

)
σ2kk(k− 1)E

(
1

N−1

N1−1∑
i=1

Yi

)2

in Equation (21) and expand (N1 − 1)−2 in

the Taylor series and applying Wald’s [44] second equation, we get

(1
2

)
σ2kk(k− 1)E

 1
N1 − 1

N1−1∑
i=1

Yi


2

= k(k− 1)σ2k(γn∗)−1 + o
(
ξ−1

)
Finally, recall the remainder term in Equation (21), and consider the following two cases:
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Case 1, if ν ≥ n∗ then n∗−1
≥ ν−1 and

1
2

n∗2σ2kkE

ν−3(N1 − 1)−2

N1−1∑
i=1

Yi


3 ≤ 1

2
n∗−1σ2km−25E(N1 − 1) = o

(
ξ−1

)
,

as m→∞ , since m ≤ N1 and Assumption (A) holds.
Case 2, if ν ≤ n∗ then ν ≥ N ≥ N1 ≥ m and m−1

≥ ν−1, it follows that

1
2

n∗2σ2kkE

ν−3(N1 − 1)−2

N1−1∑
i=1

Yi


3 ≤ 1

2
n∗2σ2k5k m−55E(N1 − 1) = o

(
ξ−1

)
,

as m→∞ by Assumption (A). Therefore,

E
(
S2k

N

)
= σ2k

− 2kσ2kn∗−1 + γk(k− 1)σ2kn∗−1 + o
(
ξ−1

)
The proof is complete. �

3. Three-Stage Coverage Probability of the Mean

P(µ ∈ IN) = P
(
|XN − µ| ≤ d

)
=

∞∑
n=m

P
(
|XN − µ| ≤ d, N = n

)
=

∞∑
n=m

P
(
|XN − µ| ≤ d|N = n

)
P(N = n)

Since XN and the events {N = n}, n = m, m+ 1, m+ 2, . . . are independent because N is a function
of S2

N1
also because XN and S2

N1
are independent for all n = m, m + 1, m + 2, . . . for the normal

distribution, it follows that,

P(µ ∈ IN) =
∞∑

n=m
P
(
|Xn − µ| ≤ d

)
P(N = n) = EN

(
2Φ

(
d
√

N/σ
))
− 1

where Φ(u) = (2π)−1/2
u∫
−∞

e−t2/2 dt. Recall Theorem 3, it follows

EN
(
2Φ

(
d
√

N/σ
))
− 1 = (2Φ(a) − 1) +

(
1
2 − 2γ−1

)
h′(n∗) + γ−1n∗h′′ (n∗) + o

(
ξ2h′′′ (ξ)

)
= (1− α) + a

n∗Φ(a)
(

1
2 − 2γ−1

)
−

a
2n∗Φ(a)

(
5 + a2

)
γ−1 + O

(
d2

)
= (1− α) − a

2γn∗Φ(a)
(
5− γ+ a2

)
+ o

(
d2

)
as ξ→∞ The quantity (2γ)−1

(
5− γ+ a2

)
is known as the cost of ignorance or the cost of not knowing

to σ2 (see Simons [45] for details).

4. The Asymptotic Regret Incurred in Estimating σ2

Theorem 5. The risk associated with (2) as m→∞ is given by

RN(A) = cn∗(1 + γ) + c(γ− 4)(2γ)−1 + o(1)

Moreover, the asymptotic regret is

ω(d) = cn∗(γ− 1) + c(γ− 4)(2γ)−1 + o(1)
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Proof. Recall the squared-error loss function given in Equation (2) and take the expectation all through,

RN(A) = E(LN(A)) = (1/2)
(
cn∗2/σ4

)
E
(
S2

N − σ
2
)2
+ c E(N)

By using Equation (16) and Theorem 4 with k = 1 we have

RN(d) = cn∗(1 + γ) + c(γ− 4)(2γ)−1 + o(1)

while the asymptotic regret of the triple sampling point estimation of σ2 under (2) is

ω(d) = E(LN(d)) − E(Ln∗(d)) = cn∗(1 + γ) + c(γ− 4)(2γ)−1
− 2cn∗ + o(1)

= cn∗(γ− 1) + c(γ− 4)(2γ)−1 + o(1)

The proof is complete. �

Clearly, for zero cost, we obtain zero regrets. While for a non zero cost, we obtain negative regret
for all 0 < γ < 1. This means that the triple sampling procedure provides better estimates than the
optimal (see Martinsek [46]).

5. Simulation Results

Since the results are asymptotic, it is worth mentioning to record the performance of the estimates
under a moderate sample size performance. Microsoft Developer Studio software was used to run
FORTRAN codes using Equations (7) and (8). A series of 50,000 replications were generated from
a normal distribution with different values of µ and σ2. The optimal sample sizes were chosen to
represent small, medium to large sample sizes n∗ = 24, 43, 61, 76, 96, 125, 171, 246, and 500 with γ = 0.5
as recommended by Hall [4,20]. For brevity, we report the case at m = 10.

5.1. The Mean and the Variance of the Normal Distribution

We estimate the optimal final sample size and its standard error, the mean and its standard error,
the coverage probability of the mean, the variance and its standard error, the asymptotic regret of using
the sample variance instead of the population variance. For constructing a fixed-width confidence
interval for the mean we take α = 0.05⇒ a = 1.96 . In each Table, we report N as an estimate of n∗,
S
(
N

)
as the standard error of N, µ̂ as an estimate of µwith standard error S(µ̂). The estimated coverage

probability is 1− α̂ while the estimated asymptotic regret is ω̂.
The simulation process is performed as follows: Fix γ, α and n∗ as in Equation (6).
First: For the i-th sample generated from the normal distribution, take a pilot sample of size m,

that is (X1,i, X2,i, . . . , Xm,i).
Second: Compute the sample mean Xi and the sample variance S2

i .
Third: Apply Equations (7) and (8) to determine the stopping sample size at this iteration, whether

in the first stage or the second stage, say N∗i .
The inverse coefficient of variation is the ratio of the population mean to the population standard

deviation, that is θ = µ/σ, θ ∈ < (no singularity point can exist over the entire real line). Assume
further a random sample of size n(≥ 2) from the normal distribution becomes available, we propose
to estimate θ by θ̂n = XnSn

−1. It is a dimensionless quantity that makes comparisons across several
populations that have different units of measurements has useful meanings. In practical life, the inverse
coefficient of variation is equal to the signal to noise ratio, which measures how much signal has been
corrupted by noise (see McGibney and Smith [47]).

Fourth: Record the resultant sample size, the sample mean, the sample standard deviation, and
the estimated inverse coefficient of variation

(
N∗i , Xi

∗, S∗i , θ̂i
)

for i = 1, 2, . . . , k where k = 50, 000
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Hence, for each experimental combination, we have four vectors of size k as follows:(
N∗1, N∗2, . . . , N∗k

)
,
(
X
∗

1, X
∗

2, . . . , X
∗

k
)
,
(
S2∗

1 , S2∗
2 , , . . . , S2∗

k

)
,
(
θ̂∗1, θ̂∗2, . . . , θ̂∗k

)
Let N = k−1

k∑
i=1

N∗i , µ̂ = X = k−1
k∑

i=1
X
∗

i , σ̂2 = S
2
= k−1

k∑
i=1

S2∗
i and θ̂ = k−1

k∑
i=1

θ∗i , where, N, X, S
2

and θ̂

are respectively the estimated mean sample size, the estimated mean of the population mean, the
estimated mean of the sample variance and the estimated mean of the inverse coefficient of variation
across replicates. The standard errors are, respectively,

S
(
N
)
= (k(k− 1))−1/2

√
k∑

i=1

(
N∗i −N

)2

S(µ̂) = (k(k− 1))−1/2

√
k∑

i=1

(
X
∗

i −X
)2

S
(
S
)
= (k(k− 1))−1/2

√
k∑

i=1

(
S2∗

i − S
2
)2

S
(
θ
)
= (k(k− 1))−1/2

√
k∑

i=1

(
θ̂∗i − θ̂

)2

Fifth: The simulated regret ω̂(A) = Ak−1
k∑

i=1

(
S2∗

i − σ
2
)2

+ cN −Rn∗ with A = (a/d)4c.

Tables 1 and 2 below show the performance of the estimates under m = 10 and γ = 0.5.

Table 1. Three-stage estimation of the mean and variance of the normal distribution under a unified
stopping rule with m = 10, γ = 0.5, µ = 10, σ = 5, α = 0.05.

n* N S(N) µ̂ S(µ̂) 1−α̂ σ̂ S(σ̂) ω

24 20.4 0.045 9.989 0.006 0.892 4.660 0.035 −27.58
43 38.4 0.068 9.997 0.004 0.905 4.767 0.031 −47.55
61 56.2 0.084 10.002 0.003 0.918 4.848 0.026 −65.80
76 71.4 0.095 9.997 0.003 0.925 4.892 0.022 −80.64
96 91.5 0.107 10.000 0.002 0.933 4.925 0.019 −100.50

125 120.4 0.121 10.000 0.002 0.936 4.943 0.016 −129.56
171 166.8 0.142 9.999 0.002 0.940 4.964 0.013 −175.21
246 242.6 0.170 10.000 0.001 0.945 4.978 0.010 −249.37
500 498.0 0.245 10.001 0.001 0.947 4.989 0.007 −501.99

Table 2. Three-stage estimation of the mean and variance of the normal distribution under a unified
stopping rule with m = 10, γ = 0.5, µ = 5, σ = 10, α = 0.05.

n* N S(N) µ̂ S(µ̂) 1−α̂ σ̂ S(σ̂) ω

24 20.4 0.044 5.002 0.011 0.890 86.798 0.141 −27.65
43 38.5 0.068 5.007 0.008 0.905 90.952 0.125 −47.52
61 56.2 0.084 5.011 0.007 0.916 93.866 0.104 −65.84
76 71.1 0.095 5.006 0.006 0.924 95.392 0.090 −80.86
96 91.3 0.107 5.007 0.005 0.931 96.975 0.077 −100.68

125 120.4 0.121 5.002 0.004 0.935 97.756 0.064 −129.57
171 167.1 0.141 4.998 0.004 0.941 98.603 0.052 −174.91
246 242.4 0.169 4.999 0.003 0.946 99.088 0.042 −249.62
500 497.7 0.249 4.997 0.002 0.947 99.597 0.029 −502.29

Regarding the final random sample size N, we noticed that as n∗ increases, N is always less than
n∗ (early stopping) with standard error increases, N/n∗ ≈ 1. While as n∗ increases µ̂ ≈ µ and σ̂ ≈ σwith
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standard error decreases. Regarding the coverage probability, the three-stage procedure under the
rules in Equations (7) and (8) provides coverage probabilities that are always less than the desired
nominal value while it attains it only asymptotically. Regarding the estimated asymptotic regret, ω̂ we
obtain negative regret, which agrees with the result of Theorem 5.

5.2. The Inverse Coefficient of Variation

As an application, we invest the three-stage estimation of both the mean and the variance to
estimate the inverse coefficient of variation θ, and its standard error S

(
θ̂
)
, the coverage probability of θ

and the asymptotic regret. To estimate θ we perform the previous steps in addition to the simulated
regret ŵ(A) using a squared-error loss function with linear sampling cost is

ŵ(A) ≈ Ak−1
k∑

i=1

(
θ̂i − θ̂

)2
+ cN −Rn∗

Table 3 below shows the performance of the procedure for estimating θ. Obviously, as n∗ increases
θ̂/θ ≈ 1 with standard errors decrease. Regarding the coverage probability of θ we noticed that
P
(
|θ̂N − θ| ≤ d

)
≥ 0.95 for all θ ∈ <. This means that the procedure attains exact consistency. Regarding

the asymptotic regret, we noticed that as n∗ increases, the regret decreases with negative values. This
means that the three-stage procedure does better than the optimal.

Table 3. Three-stage estimation of the inverse coefficient of variation under a unified stopping rule.

µ = 10, σ = 5,θ = 2 µ = 5, σ = 10,θ = 0.5

n∗ θ̂ S
(
θ̂
)

ŵ 1− α̂ n∗ θ̂ S
(
θ̂
)

ŵ 1− α̂

24 2.280 0.003 −27.47 0.979 24 0.571 0.002 −27.64 1.000
43 2.213 0.003 −47.49 0.956 43 0.554 0.001 −47.51 1.000
61 2.143 0.002 −65.76 0.967 61 0.537 0.001 −65.84 1.000
76 2.098 0.002 −80.61 0.981 76 0.526 0.001 −80.86 1.000
96 2.067 0.001 −100.47 0.990 96 0.518 0.001 −100.68 1.000

125 2.047 0.001 −129.54 0.995 125 0.512 0.001 −129.57 0.999
171 2.027 0.001 −175.20 0.998 171 0.506 0.000 −174.91 1.000
246 2.016 0.001 −249.36 0.999 246 0.504 0.000 −249.62 1.000
500 2.008 0.000 −501.99 1.000 500 0.501 0.000 −502.29 1.000

6. Conclusions

We use a three-stage procedure to tackle the point estimation problem for the variance while
estimating the mean by a confidence interval with preassigned width and coverage probability. We
use one unified stopping rule for this estimation and use the results in developing both point and
interval estimations for the inverse coefficient of variation. Monte Carlo simulations were performed
to investigate the performance of all estimators. We conclude that the estimation of the inverse
coefficient of variation through the mean and variance obtained better results with negative regret. As
an application in engineering reliability see Ghosh, Mukhopadhyay and Sen ([19]; chapter 1, p. 11).
For applications in real-world problems see Mukhopadhyay, Datta, and Chattopadhyay [48].
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