Inter-Limb Symmetry at Simultaneous and Alternated Arms Flexion by the Elbow during Water Fitness Sessions
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Measures
2.4. Statistical Procedures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matias, P.; Costa, M.; Marinho, D.; Garrido, N.; Silva, A.; Barbosa, T. Effects of a 12-wks aquatic training program in body posture and balance. Br. J. Sports Med. 2013, 47, e3. [Google Scholar] [CrossRef]
- Alcalde, G.E.; Fonseca, A.C.; Bôscoa, T.F.; Gonçalves, M.R.; Bernardo, G.C.; Pianna, B.; Carnavale, B.F.; Gimenes, C.; Barrile, S.R.; Arca, E.A. Effect of aquatic physical therapy on pain perception, functional capacity and quality of life in older people with knee osteoarthritis: Study protocol for a randomized controlled trial. Trials 2017, 18. [Google Scholar] [CrossRef] [PubMed]
- Ballaz, L.; Plamondon, S.; Lemay, M. Group aquatic training improves gait efficiency in adolescents with cerebral palsy. Disabil. Rehabil. 2011, 33, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Sanders, M.E. YMCA Water Fitness for Health; Human Kinetics: Champagn, IL, USA, 2000; ISBN 978-0-7360-3246-9. [Google Scholar]
- Costa, M.J.; Cruz, L.; Simão, A.; Barbosa, T.M. Cardiovascular and perceived effort in different head-out water exercises: Effect of limbs’ action and resistance equipment. J. Hum. Kinet. 2019, 69, 89–97. [Google Scholar] [CrossRef]
- Santos, C.C.; Rama, L.M.; Marinho, D.A.; Barbosa, T.M.; Costa, M.J. Kinetic analysis of water fitness exercises: Contributions for strength development. Int. J. Environ. Res. Public Health 2019, 16, 3784. [Google Scholar] [CrossRef] [PubMed]
- Sorond, F.A.; Cruz-Almeida, Y.; Clark, D.J.; Viswanathan, A.; Scherzer, C.R.; De Jager, P.; Csiszar, A.; Laurienti, P.J.; Hausdorff, J.M.; Chen, W.G.; et al. Aging, the central nervous system, and mobility in older adults: Neural mechanisms of mobility impairment. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 1526–1532. [Google Scholar] [CrossRef] [PubMed]
- Welsh, T.N.; Higgins, L.; Elliott, D. Are there age-related differences in learning to optimize speed, accuracy, and energy expenditure? Hum. Mov. Sci. 2007, 26, 892–912. [Google Scholar] [CrossRef] [PubMed]
- Bonder, B.R.; Bello-Haas, V.D. Functional Performance in Older Adults, 4th ed.; F.A. Davis: Philadelphia, PA, USA, 2018; ISBN 978-0-8036-2240-1. [Google Scholar]
- Barbosa, T.M.; Garrido, M.F.; Bragada, J. Physiological adaptations to head-out aquatic exercises with different levels of body immersion. J. Strength Cond. Res. 2007, 21, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Kinder, T.; See, J. Aqua Aerobics: A Scientific Approach, 1st ed.; Eddie Bowers Pub. Co.: Dubuque, IA, USA, 1992; ISBN 978-0-945483-20-5. [Google Scholar]
- Havriluk, R. Validation of a criterion measure for swimming technique. J. Swim. Res. 1988, 4, 11–16. [Google Scholar]
- Robinson, R.O.; Herzog, W.; Nigg, B.M. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manip. Physiol. Ther. 1987, 10, 172–176. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Bixler, B. Resistance and propulsion. In Swimming; Handbook of Sports Medicine and Science; Stager, J.M., Tanner, D.A., Eds.; Blackwell Scientific Publications: Bloomington, IN, USA, 2005; pp. 59–100. ISBN 0-632-05914-1. [Google Scholar]
- Pan, Z.; Van Gemmert, A.W.A. The control of amplitude and direction in a bimanual coordination task. Hum. Mov. Sci. 2019, 65, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Huntley, A.H.; Zettel, J.L.; Vallis, L.A. Simultaneous turn and step task for investigating control strategies in healthy young and community dwelling older adults. Motor Control 2017, 21, 265–283. [Google Scholar] [CrossRef] [PubMed]
- Marchini, A.; Pereira, R.; Pedroso, W.; Christou, E.; Neto, O.P. Age-associated differences in motor output variability and coordination during the simultaneous dorsiflexion of both feet. Somatosens. Mot. Res. 2017, 34, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Capranica, L.; Tessitore, A.; Olivieri, B.; Pesce, C. Homolateral hand and foot coordination in trained older women. Gerontology 2005, 51, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Morouço, P.G.; Marinho, D.A.; Fernandes, R.J.; Marques, M.C. Quantification of upper limb kinetic asymmetries in front crawl swimming. Hum. Mov. Sci. 2015, 40, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Bartolomeu, R.F.; Costa, M.J.; Barbosa, T.M. Contribution of limbs’ actions to the four competitive swimming strokes: A nonlinear approach. J. Sports Sci. 2018, 36, 1836–1845. [Google Scholar] [CrossRef] [PubMed]
- Cabral, S. Gait symmetry measures and their relevance to gait retraining. In Handbook of Human Motion; Müller, B., Wolf, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Moresi, M.; Bradshaw, E.J.; Thomas, K.; Greene, D.; Braybon, W. Intra-limb variability and inter-limb symmetry in gymnastics jump tests. In Proceedings of the 31 International Conference on Biomechanics in Sports, Taipei, Taiwan, 7–11 July 2013. [Google Scholar]
- Torres-Ronda, L.; del Alcázar, X.S. The properties of water and their applications for training. J. Hum. Kinet. 2014, 44, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Balogun, J.A.; Akindele, K.A.; Nihinlola, J.O.; Marzouk, D.K. Age-related changes in balance performance. Disabil. Rehabil. 1994, 16, 58–62. [Google Scholar] [CrossRef]
Strategies | Variables | Music Cadence (b·min−1) | |||||||
---|---|---|---|---|---|---|---|---|---|
105 | p | 120 | p | 135 | p | 150 | p | ||
Simultaneous | PFD (N) | 14.87 ± 6.81 | <0.01 | 17.06 ± 4.82 | <0.01 | 20.53 ± 6.24 | 0.01 | 24.97 ± 5.84 | 0.01 |
PFND (N) | 11.38 ± 5.28 | 14.77 ± 5.43 | 18.22 ± 5.49 | 22.16 ± 7.32 | |||||
Alternated | PFD (N) | 13.18 ± 4.50 | 0.12 | 15.33 ± 4.35 | 0.24 | 18.43 ± 6.92 | 0.44 | 23.21 ± 9.38 | 0.72 |
PFND (N) | 12.03 ± 4.30 | 14.33 ± 5.17 | 17.66 ± 7.55 | 23.76 ± 10.93 |
Music Cadence (b·min−1) | Variable | Simultaneous | Alternated | p |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
105 | SI (%) | 30.45 ± 18.26 | 23.03 ± 15.27 | 0.11 |
120 | SI (%) | 21.25 ± 16.37 | 23.18 ± 15.85 | 0.68 |
135 | SI (%) | 20.86 ± 12.38 | 21.35 ± 21.48 | 0.97 |
150 | SI (%) | 20.20 ± 13.78 | 28.07 ± 23.08 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, C.C.; Barbosa, T.M.; Bartolomeu, R.F.; Garrido, N.D.; Costa, M.J. Inter-Limb Symmetry at Simultaneous and Alternated Arms Flexion by the Elbow during Water Fitness Sessions. Symmetry 2020, 12, 1776. https://doi.org/10.3390/sym12111776
Santos CC, Barbosa TM, Bartolomeu RF, Garrido ND, Costa MJ. Inter-Limb Symmetry at Simultaneous and Alternated Arms Flexion by the Elbow during Water Fitness Sessions. Symmetry. 2020; 12(11):1776. https://doi.org/10.3390/sym12111776
Chicago/Turabian StyleSantos, Catarina C., Tiago M. Barbosa, Raúl F. Bartolomeu, Nuno D. Garrido, and Mário J. Costa. 2020. "Inter-Limb Symmetry at Simultaneous and Alternated Arms Flexion by the Elbow during Water Fitness Sessions" Symmetry 12, no. 11: 1776. https://doi.org/10.3390/sym12111776
APA StyleSantos, C. C., Barbosa, T. M., Bartolomeu, R. F., Garrido, N. D., & Costa, M. J. (2020). Inter-Limb Symmetry at Simultaneous and Alternated Arms Flexion by the Elbow during Water Fitness Sessions. Symmetry, 12(11), 1776. https://doi.org/10.3390/sym12111776