# Adaptive Image Edge Extraction Based on Discrete Algorithm and Classical Canny Operator

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Related Work

## 3. Sub Pixel Edge Extraction Model of Adaptive Image Edge Detection Algorithm Based on Canny Operator

## 4. Experimental Design and Analysis

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

## References

- Bampis, L.; Iakovidou, C.; Chatzichristofis, S.A.; Boutalis, Y.S.; Amanatiadis, A. Real-time indexing for large image databases: Color and edge directivity descriptor on GPU. J. Supercomput.
**2015**, 71, 909–937. [Google Scholar] [CrossRef] - Lee, M.; Woo, B.; Kim, J.; Jamshidi, N.; Kuo, M. Su-E-J-252: Reproducibility of radio genomic image features: Comparison of two semi-automated segmentation methods. Med. Phys.
**2015**, 42, 3324. [Google Scholar] [CrossRef] - Zuo, Y.; Liu, J.; Yang, M.; Wang, X.; Sun, M. Algorithm for unmanned aerial vehicle aerial different-source image matching. Opt. Eng.
**2016**, 55, 123111. [Google Scholar] [CrossRef] - Wang, K.; Lin, L.; Lu, J.; Li, C.; Shi, K. Pisa: Pixelwise image saliency by aggregating complementary appearance contrast measures with edge-preserving coherence. IEEE Trans. Image Process.
**2015**, 24, 3019–3033. [Google Scholar] [CrossRef] [Green Version] - Fernando, G.O.; Francisco, D.J. Boundary layer detection techniques applied to edge detection. Int. J. Image Graph.
**2019**, 19, 1950010. [Google Scholar] - Peng, F.; Wang, S.; Liang, S. Establishment of cellular automata image model and its application in image dimension measurement. EURASIP J. Image Video Process.
**2019**, 2019, 14. [Google Scholar] [CrossRef] - Yuan, S.; Venegas-Andraca, S.E.; Wang, Y.; Luo, Y.; Mao, X.F. Quantum image edge detection algorithm. Int. J. Theor. Phys.
**2019**, 58, 2823–2833. [Google Scholar] [CrossRef] - Sun, Q.; Liang, F.; Wang, F.; Cong, H.; Li, Q.; Yan, J. Investigation on the geometrical characteristics of secondary arc by image edge detection. IEEE Trans. Plasma Sci.
**2018**, 46, 2016–2025. [Google Scholar] [CrossRef] - Biswas, S.; Hazra, R. Robust edge detection based on modified moore-neighbor. Opt. Int. J. Light Electron Opt.
**2018**, 168, 931–943. [Google Scholar] [CrossRef] - He, Y.; Zeng, Y.; Chen, H.; Xiao, S.; Wang, Y.; Huang, S. Research on improved edge extraction algorithm of rectangular piece. Int. J. Mod. Phys. C
**2018**, 29, 1850007. [Google Scholar] [CrossRef] - Wan, X.; Zhao, C.; Gao, B. Integration of adaptive guided filtering, deep feature learning, and edge-detection techniques for hyperspectral image classification. Opt. Eng.
**2017**, 56, 113106. [Google Scholar] [CrossRef] - Zhou, R.; Liu, D. Quantum image edge extraction based on improved sobel operator. Int. J. Theor. Phys.
**2019**, 58, 1–17. [Google Scholar] [CrossRef] - Tang, C.; Hou, C.; Hou, Y.; Wang, P.; Li, W. An effective edge-preserving smoothing method for image manipulation. Digit. Signal Process.
**2016**, 63, 10–24. [Google Scholar] [CrossRef] - Pérez-Benito, C.; Morillas, S.; Jordán, C.; Conejero, J.A. Smoothing vs. sharpening of colour images: Together or separated. Appl. Math. Nonlinear Sci.
**2017**, 2, 299–316. [Google Scholar] [CrossRef] [Green Version] - Zead, I.; Saad, M.; Sanad, M.R. Photometric and spectroscopic studies of the intermediate -polar cataclysmic system DQ Her. Appl. Math. Nonlinear Sci.
**2017**, 2, 181–194. [Google Scholar] [CrossRef] [Green Version] - Shu, Q.L.; Shan, B. Sub-Pixel Localization Algorithm Based on Modified Canny Operator. Mach. Des. Manuf.
**2017**, 332, 172–175. [Google Scholar] - Han, D.; Li, Y.Q.; Wu, Y.H. Sub-pixel edge detection based on gaussian fitting. Comput. Appl. Softw.
**2018**, 35, 210–229. [Google Scholar] - Zhu, W.; Liu, M.; Ye, S. Small module gear sub-pixel image edge detection based on neighborhood characteristic analysis. Acta Instrum. Sin.
**2018**, 39, 148–156. [Google Scholar] - Yadav, S.K. Some results on D-homothetic deformation of (LCS)2n+1-manifolds. Appl. Math. Nonlinear Sci.
**2019**, 4, 113–128. [Google Scholar] [CrossRef] [Green Version] - Qu, S.; Zhao, L.; Xiong, Z. Cross-layer congestion control of wireless sensor networks based on fuzzy sliding mode control. Neural Comput. Appl.
**2020**, 32, 13505–13520. [Google Scholar] [CrossRef] - Zeng, H.; Liu, X.; Wang, W.; Xiao, S. New results on stability analysis of systems with time-varying delays using a generalized free-matrix-based inequality. J. Frankl. Inst.
**2019**, 356, 7312–7321. [Google Scholar] [CrossRef]

Angle | Zernike | Sobel | Sigmod | Algorithm in this Paper | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

ε_{max} | μ_{s} | σ_{ε} | ε_{max} | μ_{s} | σ_{ε} | ε_{max} | μ_{s} | σ_{ε} | ε_{max} | μ_{s} | σ_{ε} | |

0 | 0.512 | 0.146 | 0.111 | 1.149 | 0.345 | 0.248 | 0.612 | 0.168 | 0.124 | 0.435 | 0.104 | 0.069 |

10 | 0.462 | 0.112 | 0.081 | 1.182 | 0.361 | 0.251 | 0.728 | 0.152 | 0.109 | 0.368 | 0.099 | 0.064 |

20 | 0.425 | 0.109 | 0.079 | 1.182 | 0.287 | 0.226 | 0.579 | 0.143 | 0.113 | 0.278 | 0.081 | 0.060 |

30 | 0.348 | 0.079 | 0.075 | 1.153 | 0.298 | 0.249 | 0.538 | 0.128 | 0.121 | 0.254 | 0.069 | 0.049 |

40 | 0.319 | 0.077 | 0.059 | 1.038 | 0.238 | 0.204 | 0.439 | 0.118 | 0.087 | 0.248 | 0.058 | 0.051 |

50 | 0.417 | 0.082 | 0.060 | 1.066 | 0.271 | 0.195 | 0.508 | 0.109 | 0.079 | 0.247 | 0.072 | 0.052 |

60 | 0.382 | 0.088 | 0.101 | 1.011 | 0.309 | 0.224 | 0.482 | 0.128 | 0.101 | 0.349 | 0.078 | 0.059 |

70 | 0.442 | 0.112 | 0.094 | 1.162 | 0.364 | 0.241 | 0.572 | 0.145 | 0.095 | 0.308 | 0.079 | 0.058 |

80 | 0.451 | 0.110 | 0.087 | 1.439 | 0.385 | 0.275 | 0.598 | 0.139 | 0.113 | 0.269 | 0.077 | 0.057 |

90 | 0.446 | 0.123 | 0.086 | 1.572 | 0.315 | 0.268 | 0.638 | 0.137 | 0.121 | 0.319 | 0.091 | 0.069 |

Angle | Zernike | Sobel | Sigmod | Algorithm in this Paper | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|

εmax | μs | σε | εmax | μs | σε | εmax | μs | σε | εmax | μs | σε | |

0 | 1.514 | 0.412 | 0.325 | 2.025 | 0.527 | 0.378 | 1.098 | 0.429 | 0.301 | 1.078 | 0.279 | 0.218 |

10 | 1.345 | 0.368 | 0.284 | 1.752 | 0.498 | 0.385 | 0.138 | 0.315 | 0.246 | 1.062 | 0.289 | 0.207 |

20 | 1.138 | 0.324 | 0.223 | 1.584 | 0.456 | 0.356 | 0.997 | 0.258 | 0.208 | 1.021 | 0.235 | 0.179 |

30 | 1.002 | 0.251 | 0.197 | 1.698 | 0.368 | 0.284 | 1.482 | 0.183 | 0.189 | 0.627 | 0.176 | 0.137 |

40 | 0.825 | 0.183 | 0.145 | 1.036 | 0.268 | 0.207 | 0.725 | 0.192 | 0.142 | 0.542 | 0.135 | 0.108 |

50 | 0.603 | 0.184 | 0.146 | 0.996 | 0.276 | 0.198 | 0.598 | 0.234 | 0.156 | 0.608 | 0.132 | 0.102 |

60 | 0.876 | 0.208 | 0.178 | 1.058 | 0.359 | 0.284 | 0.793 | 0.291 | 0.197 | 0.827 | 0.208 | 0.158 |

70 | 0.134 | 0.275 | 0.236 | 1.325 | 0.386 | 0.315 | 1.084 | 0.326 | 0.227 | 1.023 | 0.247 | 0.199 |

80 | 0.368 | 0.345 | 0.286 | 1.587 | 0.478 | 0.368 | 1.126 | 0.278 | 0.294 | 1.157 | 0.276 | 0.218 |

90 | 0.421 | 0.394 | 0.298 | 1.678 | 0.524 | 0.375 | 1.528 | 0.385 | 0.315 | 1.205 | 0.298 | 0.219 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kanchanatripop, P.; Zhang, D.
Adaptive Image Edge Extraction Based on Discrete Algorithm and Classical Canny Operator. *Symmetry* **2020**, *12*, 1749.
https://doi.org/10.3390/sym12111749

**AMA Style**

Kanchanatripop P, Zhang D.
Adaptive Image Edge Extraction Based on Discrete Algorithm and Classical Canny Operator. *Symmetry*. 2020; 12(11):1749.
https://doi.org/10.3390/sym12111749

**Chicago/Turabian Style**

Kanchanatripop, Phusit, and Dafang Zhang.
2020. "Adaptive Image Edge Extraction Based on Discrete Algorithm and Classical Canny Operator" *Symmetry* 12, no. 11: 1749.
https://doi.org/10.3390/sym12111749