A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space
Abstract
:1. Introduction
2. Related Work
3. The Feynman Scalar Field Propagator as a Tempered Measure
4. A Spectral Calculus for Lorentz Invariant Measures
5. Investigation of the Measure Defined by the Convolution
5.1. Determination of Some Properties of
5.2. Computation of the Spectrum of Using the Spectral Calculus
6. Proof of the Validity of Argument 1
- but or
- but or
- but or
- but .
7. Investigation of the Measure Defined by the Convolution
8. Determination of the Density Defining a Causal Lorentz Invariant Borel Measure from Its Spectrum
9. Convolutions and Products of Causal Lorentz Invariant Borel Measures
9.1. Convolution of Measures
9.2. Product of measures
10. Conclusions
Funding
Conflicts of Interest
References
- Halmos, P.R. Measure Theory; Springer: New York, NY, USA, 1988. [Google Scholar]
- Garding, L.; Lions, J.L. Functional Analysis. Nuovo C. 1959, 14 (Suppl. 1), 9–66. [Google Scholar] [CrossRef]
- Epstein, H.; Glaser, V. Role of locality in perturbation theory. Ann. l’Institut Henri Poincaré Sect. A Phys. Théorique 1973, 19, 211–295. [Google Scholar]
- Källén, G. On the definition of the renormalization constants in quantumelectrodynamics. Helv. Phys. Acta 1952, 25, 417–434. [Google Scholar]
- Lehmann, H. Über eigenshaften von ausbreitungsfunkionen und renormierungskonstanten quantisierter felder. Il Nuovo C. 1954, 11, 342–357. [Google Scholar] [CrossRef]
- Itzykson, C.; Zuber, J.-B. Quantum Field Theory; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Borthwick, D. Spectral Theory of Infinite-Area Hyperbolic Surfaces; Birkhauser: Basel, Switzerland, 2007. [Google Scholar]
- Sarnak, P. Spectra of hyperbolic surfaces. Bull. Am. Math. Soc. 2003, 40, 441–478. [Google Scholar] [CrossRef] [Green Version]
- Bollini, C.G.; Marchiano, P.; Rocca, M.C. Convolution of ultradistributions, field theory, Lorentz invariance and resonances. Int. J. Theor. Phys. 2007, 46, 3030–3059. [Google Scholar] [CrossRef] [Green Version]
- Kamiński, A.; Mincheva-Kaminska, S. Compatibility conditions and the convolution of functions and generalized functions. J. Funct. Spaces Appl. 2013, 356724. [Google Scholar] [CrossRef]
- Ortner, N.; Wagner, P. Applications of O(p,q) invariant distributions. Math. Nachtrichten 2017, 290, 2995–3005. [Google Scholar] [CrossRef]
- Zinoviev, Y.M. Lorentz covariant distributions with spectral conditions. Theor. Math. Phys. 2008, 156, 1247–1267. [Google Scholar] [CrossRef] [Green Version]
- Soloviev, M.A. Lorentz-covariant ultradistributions, hyperfunctions and analytic functionals. Theoret. Mat. Phys. 2001, 128, 1252–1270. [Google Scholar] [CrossRef]
- Harish-Chandra. Invariant distributions on Lie algebras. Am. J. Math. 1964, 86, 271–309. [Google Scholar] [CrossRef]
- Kolk, J.A.C.; Varadarajan, V.S. Lorentz invariant distributions supported on the forward light cone. Compos. Math. 1992, 81, 61–106. [Google Scholar]
- Mashford, J. Second quantized quantum field theory based on invariance properties of locally conformally flat space-times. arXiv 2017, arXiv:1709.09226. [Google Scholar]
- Mandl, F.; Shaw, G. Quantum Field Theory; Wiley: Chichester, UK, 1991. [Google Scholar]
- Bogolubov, N.N.; Logunov, A.A.; Todorov, I.T. Introduction to Axiomatic Quantum Field Theory; W. A. Benjamin, Inc.: Reading, MA, USA, 1975. [Google Scholar]
- Colombeau, J.F. New Generalized Functions and Multiplication of Distributions; Elsevier: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Oberguggenberger, M. Multiplication of Distributions and Applications to Partial Differential Equations; Longman: New York, NY, USA, 1992. [Google Scholar]
- Mashford, J. An introduction to spectral regularization for quantum field theory. In Springer Proceedings in Mathematics and Statistics, Proceedings of the XIII International Workshop on Lie Theory and Its Applications in Physics, Varna, Bulgaria, 17–23 June 2019; Dobrev, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 335. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashford, J. A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space. Symmetry 2020, 12, 1696. https://doi.org/10.3390/sym12101696
Mashford J. A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space. Symmetry. 2020; 12(10):1696. https://doi.org/10.3390/sym12101696
Chicago/Turabian StyleMashford, John. 2020. "A Spectral Calculus for Lorentz Invariant Measures on Minkowski Space" Symmetry 12, no. 10: 1696. https://doi.org/10.3390/sym12101696