On Functional Hamilton–Jacobi and Schrödinger Equations and Functional Renormalization Group
Abstract
:1. Introduction
2. Functional Hamilton–Jacobi Equation and its Hierarchy
2.1. Functional Hamilton–Jacobi Equation
2.2. Two-Particle Green Function Equation
2.3. Translation-Invariant Solution for Green Function on Delta-Field Configuration
2.3.1. Special Riccati Equation
2.3.2. Self-Similar Riccati Equation
2.4. Integration Formula for Functionals
2.5. Translation-Invariant Functional Solution for Green Function
2.6. Translation-Invariant Solution for Green Function on Constant-Field Configuration
2.7. Separable Solution for Green Function on Delta-Field Configuration
3. Functional Schrödinger Equation and Semiclassical Approximation
3.1. Functional Schrödinger Equation
3.2. Derivation of Quantum Hamilton–Jacobi and Continuity Functional Equations and Semiclassics
3.3. Hamilton–Jacobi and Continuity Functional Equations Hierarchies
3.4. Translation-Invariant Solution for Green Functions on Delta-Field Configuration
3.4.1. Hamilton–Jacobi Functional Equation Hierarchy
3.4.2. Continuity Functional Equation Hierarchy and Optical Potential
3.4.3. Open Quantum Field Systems
4. Wilson–Polchinski Functional Equation and Functional Renormalization Group
4.1. Quantum and Classical Parts of the Wilson–Polchinski Equation
4.2. Solution of the Approximated Wilson–Polchinski Equation: Two-Particle Green Function
4.3. Solution of the Approximated Wilson–Polchinski Equation: Four-Particle Green Function
4.4. Mode Coarse Graining Growth Functionals Rigorous Derivation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AdS | Anti-de Sitter |
CFT | Conformal Field Theory |
NL | Newton–Leibniz |
HJ | Hamilton–Jacobi |
WP | Wilson–Polchinski |
GF | Green Function |
QM | Quantum Mechanics |
QFT | Quantum Field Theory |
RG | Renormalization Group |
LPA | Local Potential Approximation |
FRG | Functional Renormalization Group |
HRG | Holographic Renormalization Group |
References
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; Clarendon: Oxford, UK, 1989. [Google Scholar]
- Vasiliev, A.N. The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Popov, V.N. Path Integrals in Quantum Field Theory and Statistical Physics; Atomizdat: Moscow, Russia, 1976. (In Russian) [Google Scholar]
- Kleinert, H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2009. [Google Scholar]
- Mosel, U. Path Integrals in Field Theory. An Introduction; Advanced Texts in Physics; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Simon, B. Functional Integration and Quantum Physics; AMS Chelsea Publishing: Providence, RI, USA, 2005. [Google Scholar]
- Efimov, G.V.; Ivanov, M.A. The Quark Confinement Model of Hadrons; Taylor and Francis Group: New York, NY, USA, 1993. [Google Scholar]
- Dineykhan, M.; Efimov, G.V.; Ganbold, G.; Nedelko, S.N. Oscillator Representation in Quantum Physics; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Brydges, D.C.; Martin, P.A. Coulomb Systems at Low Density: A Review. J. Stat. Phys. 1999, 96, 1163–1330. [Google Scholar] [CrossRef] [Green Version]
- Rebenko, A.L. Mathematical Foundations of Equilibrium Classical Statistical Mechanics of Charged Particles. Russ. Math. Surv. 1988, 43, 65–116. [Google Scholar] [CrossRef]
- Efimov, G.V. Strong Coupling in the Quantum Field Theory with Nonlocal Nonpolynomial Interaction. Commun. Math. Phys. 1977, 57, 235–258. [Google Scholar] [CrossRef]
- Efimov, G.V. Vacuum Energy in g-Phi-4 Theory for Infinite g. Commun. Math. Phys. 1979, 65, 15–44. [Google Scholar] [CrossRef]
- Efimov, G.V. Elastic Scattering and the Path Integral. Theor. Math. Phys. 2014, 179, 695–711. [Google Scholar] [CrossRef] [Green Version]
- Efimov, G.V. Quantum Particle in a Random Medium. Theor. Math. Phys. 2015, 185, 1433–1444. [Google Scholar] [CrossRef]
- Albeverio, S.A.; Høegh-Krohn, R.J.; Mazzucchi, S. Mathematical Theory of Feynman Path Integrals. An Introduction; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Mazzucchi, S. Mathematical Feynman Path Integrals and Their Applications; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2009. [Google Scholar]
- Cartier, P.; DeWitt-Morette, C. Functional Integration: Action and Symmetries; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Montvay, I.; Münster, G. Quantum Fields on a Lattice; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Johnson, G.W.; Lapidus, M.L. The Feynman Integral and Feynman’s Operational Calculus; Oxford Mathematical Monographs; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Grosche, C.; Steiner, F. Handbook of Feynman Path Integrals; Springer Tracts in Modern Physics; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Smolyanov, O.G.; Shavgulidze, E.T. Path Integrals; URSS: Moscow, Russia, 2015. (In Russian)
- Chebotarev, I.V.; Guskov, V.A.; Ogarkov, S.L.; Bernard, M. S-Matrix of Nonlocal Scalar Quantum Field Theory in Basis Functions Representation. Particles 2019, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Bernard, M.; Guskov, V.A.; Ivanov, M.G.; Kalugin, A.E.; Ogarkov, S.L. Nonlocal Scalar Quantum Field Theory—Functional Integration, Basis Functions Representation and Strong Coupling Expansion. Particles 2019, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Kopietz, P.; Bartosch, L.; Schütz, F. Introduction to the Functional Renormalization Group; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Wipf, A. Statistical Approach to Quantum Field Theory; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Rosten, O.J. Fundamentals of the Exact Renormalization Group. Phys. Rep. 2012, 511, 177–272. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, Y.; Itoh, K.; Sonoda, H. Realization of Symmetry in the ERG Approach to Quantum Field Theory. Prog. Theor. Phys. Suppl. 2009, 181, 1–166. [Google Scholar] [CrossRef] [Green Version]
- Efimov, G.V. Nonlocal Interactions of Quantized Fields; Nauka: Moscow, Russia, 1977. (In Russian) [Google Scholar]
- Efimov, G.V. Problems of the Quantum Theory of Nonlocal Interactions; Nauka: Moscow, Russia, 1985. (In Russian) [Google Scholar]
- Petrina, D.Y.; Skripnik, V.I. Kirkwood–Salzburg Equations for the Coefficient Functions of the Scattering Matrix. Theor. Math. Phys. 1971, 8, 896–904. [Google Scholar] [CrossRef]
- Rebenko, A.L. On Equations for the Matrix Elements of Euclidean Quantum Electrodynamics. Theor. Math. Phys. 1972, 11, 525–536. [Google Scholar] [CrossRef]
- Fradkin, E.S. Selected Papers on Theoretical Physics; Papers in English and Russian; Nauka: Moscow, Russia, 2007. [Google Scholar]
- Lizana, J.M.; Morris, T.R.; Pérez-Victoria, M. Holographic Renormalisation Group Flows and Renormalisation from a Wilsonian Perspective. J. High Energy Phys. 2016, 2016, 198. [Google Scholar] [CrossRef] [Green Version]
- Akhmedov, E.T. A Remark on the AdS/CFT Correspondence and the Renormalization Group Flow. Phys. Lett. B 1998, 442, 152–158. [Google Scholar] [CrossRef] [Green Version]
- De Boer, J.; Verlinde, E.; Verlinde, H. On the Holographic Renormalization Group. J. High Energy Phys. 2000, 2000, 3. [Google Scholar] [CrossRef] [Green Version]
- Verlinde, E.; Verlinde, H. RG-Flow, Gravity and the Cosmological Constant. J. High Energy Phys. 2000, 2000, 34. [Google Scholar] [CrossRef] [Green Version]
- Fukuma, M.; Matsuura, S.; Sakai, T. Holographic Renormalization Group. Prog. Theor. Phys. 2003, 4, 489–562. [Google Scholar] [CrossRef] [Green Version]
- Akhmedov, E.T. Notes on Multi-Trace Operators and Holographic Renormalization Group. arXiv 2002, arXiv:hep-th/0202055v3. [Google Scholar]
- Akhmedov, E.T.; Gahramanov, I.B.; Musaev, E.T. Hints on Integrability in the Wilsonian/Holographic Renormalization Group. JETP Lett. 2011, 93, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Heemskerk, I.; Polchinski, J. Holographic and Wilsonian Renormalization Groups. J. High Energy Phys. 2011, 2011, 31. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J.M. The Large-N Limit of Superconformal Field Theories and Supergravity. Int. J. Theor. Phys. 1999, 38, 1113–1133. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Anti-de Sitter Space and Holography. Adv. Theor. Math. Phys. 1998, 2, 253–291. [Google Scholar] [CrossRef]
- Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M. Gauge Theory Correlators from Non-Critical String Theory. Phys. Lett. B 1998, 428, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Polchinski, J. String Theory; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Doplicher, L. Generalized Tomonaga–Schwinger Equation from the Hadamard Formula. Phys. Rev. D 2004, 70, 064037. [Google Scholar] [CrossRef] [Green Version]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Baidya, A.; Jana, C.; Loganayagam, R.; Rudra, A. Renormalization in Open Quantum Field Theory. Part I. Scalar Field Theory. J. High Energy Phys. 2017, 2017, 204. [Google Scholar] [CrossRef] [Green Version]
- Baidya, A.; Jana, C.; Rudra, A. Renormalization in Open Quantum Field Theory. Part II. Yukawa Theory and PV Reduction. arXiv 2017, arXiv:1906.10180v1. [Google Scholar]
- Bogoliubov, N.N.; Shirkov, D.V. Introduction to the Theory of Quantized Fields; A Wiley-Intersciense Publication; John Wiley and Sons Inc.: New York, NY, USA, 1980. [Google Scholar]
- Bogoliubov, N.N.; Shirkov, D.V. Quantum Fields; Benjiamin/Cummings Publishing Company Inc.: San Francisco, CA, USA, 1983. [Google Scholar]
- Bogolyubov, N.N.; Logunov, A.A.; Oksak, A.I.; Todorov, I.T. General Principles of Quantum Field Theory. In Mathematical Physics and Applied Mathematics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Guskov, V.A.; Ivanov, M.G.; Ogarkov, S.L. A Note on Efimov Nonlocal and Nonpolynomial Quantum Scalar Field Theory. arXiv 2017, arXiv:1711.08829v5. [Google Scholar]
- Felder, G. Renormalization Group in the Local Potential Approximation. Commun. Math. Phys. 1987, 111, 101–121. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, M.G.; Kalugin, A.E.; Ogarkova, A.A.; Ogarkov, S.L. On Functional Hamilton–Jacobi and Schrödinger Equations and Functional Renormalization Group. Symmetry 2020, 12, 1657. https://doi.org/10.3390/sym12101657
Ivanov MG, Kalugin AE, Ogarkova AA, Ogarkov SL. On Functional Hamilton–Jacobi and Schrödinger Equations and Functional Renormalization Group. Symmetry. 2020; 12(10):1657. https://doi.org/10.3390/sym12101657
Chicago/Turabian StyleIvanov, Mikhail G., Alexey E. Kalugin, Anna A. Ogarkova, and Stanislav L. Ogarkov. 2020. "On Functional Hamilton–Jacobi and Schrödinger Equations and Functional Renormalization Group" Symmetry 12, no. 10: 1657. https://doi.org/10.3390/sym12101657
APA StyleIvanov, M. G., Kalugin, A. E., Ogarkova, A. A., & Ogarkov, S. L. (2020). On Functional Hamilton–Jacobi and Schrödinger Equations and Functional Renormalization Group. Symmetry, 12(10), 1657. https://doi.org/10.3390/sym12101657