On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials
Abstract
1. Introduction
2. Preliminaries
3. The Orbit and the Modified Orbit Polynomials
3.1. Orbit Polynomial of Line Graphs
3.2. Graph Classification with Respect to Orbit Polynomial
4. Orbit-Entropy Polynomial
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cvetković, D.; Doob, M.; Sachs, H. Spectra of Graphs Theory and Applications; Academic Press: Heidelberg, Germany, 1995. [Google Scholar]
- Hosoya, H. On some counting polynomials in chemistry. Applications of graphs in chemistry and physics. Discret. Appl. Math. 1988, 19, 239–257. [Google Scholar] [CrossRef]
- Gutman, I.; Harary, F. Generalizations of the matching polynomial. Util. Math. 1983, 24, 97–106. [Google Scholar]
- Gutman, I.; Bonchev, D.; Rouvray, D.H. Polynomials in Graph Theory. Chemical Graph Theory, Introduction and Fundamentals; Abacus Press: New York, NY, USA, 1991; pp. 133–176. [Google Scholar]
- Gutman, I.; Furtula, B.; Katanić, V. Randić index and information. AKCE Int. J. Graphs Comb. 2018, 15, 307–312. [Google Scholar] [CrossRef]
- Hosoya, H. Topological index, A newly proposed quantity characterizing the topological nautre of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 1971, 44, 2332–2339. [Google Scholar] [CrossRef]
- Hosoya, H. Clar’s aromatic sextet and sextet polynomial. Top. Curr. Chem. 1990, 153, 255–272. [Google Scholar]
- Farrell, E.J. An introduction to matching polynomials. J. Comb. Theory 1979, 27, 75–86. [Google Scholar] [CrossRef]
- Gutman, I.; Hosoya, H. Molecular graphs with equal Zcounting and independence polynomials. Z. Naturforsch. 1990, 45, 645–648. [Google Scholar]
- Gutman, I. Some analytical properties of the independence and matching polynomials. Match Commun. Math. Comput. Chem. 1992, 28, 139–150. [Google Scholar]
- Stevanović, D.; Motoyama, A.; Hosoya, H. King and domino polynomials for polyomino graphs, Graph Theory Notes. J. Math. Phys. 1977, 34, 31–36. [Google Scholar]
- Balasubramanian, K.; Ramaraj, R. Computer generation of king and color polynomials of graphs and lattices and their applications to statistical mechanics. J. Comput. Chem. 1985, 6, 447–454. [Google Scholar] [CrossRef]
- Farrell, E.J.; De Matas, C.M. On star polynomials of complements of graphs. Ark. Mat. 1988, 26, 85–190. [Google Scholar] [CrossRef]
- Farrell, E.J.; De Matas, C.M. Star polynomials of some families of graphs with small cyclomatic numbers. Util. Math. 1988, 33, 33–45. [Google Scholar]
- Balasubramanian, K. On Graph Theoretical Polynomials in Chemistry. In Mathematical and Computational Concepts in Chemistry; Trinastic, N., Ed.; Ellis Horwood Ltd.: New York, NY, USA, 1986; pp. 20–33. [Google Scholar]
- Dehmer, M.; Chen, Z.; Emmert-Streibd, F.; Mowshowitz, A.; Varmuzag, K.; Jodlbauer, H.; Shih, Y.; Tripathi, S.; Tao, J. The orbit-polynomial: A novel measure of symmetry in graphs. IEEE Access 2020, 8, 36100–36112. [Google Scholar] [CrossRef]
- Dehmer, M.; Chen, Z.; Emmert-Streib, F.; Shi, Y.; Tripathi, S. Graph measures with high discrimination power revisited: A random polynomial approach. Inform. Sci. 2018, 467, 407–414. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Basak, S.C. Characterization of isospectral graphs using Ggraph invariants and derived orthogonal parameters. J. Chem. Inf. Comput. Sci. 1998, 38, 367–373. [Google Scholar] [CrossRef]
- Dixon, J.D.; Mortimer, B. Permutation Groups; Springer: New York, NY, USA, 1996. [Google Scholar]
- Harary, F. Graph Theory; Addison-Wesley Publishing Company: Boston, MA, USA, 1969. [Google Scholar]
- Dehmer, M.; Mowshowitz, A.; Shi, Y. Structural differentiation of graphs using Hosoya-based indices. PLoS ONE 2014, 7, e102459. [Google Scholar] [CrossRef] [PubMed]
- Dehmer, M.; Emmert-Streib, F.; Shi, Y. Graph distance measures based on topological indices revisited. Appl. Math. Comput. 2015, 266, 623–633. [Google Scholar] [CrossRef]
- Mowshowitz, A.; Dehmer, M. The Hosoya entropy of a graph. Entropy 2015, 17, 1054–1062. [Google Scholar] [CrossRef]
- Ghorbani, M.; Dehmer, M.; Rajabi-Parsa, M.; Emmert-Streib, F.; Mowshowitz, A. Hosoya entropy of fullerene graph. Appl. Math. Comput. 2019, 352, 88–98. [Google Scholar]
- Ghorbani, M.; Dehmer; Mowshowitz, A.; Emmert-Streib, F. The Hosoya entropy of graphs revisited. Symmetry 2019, 11, 1013. [Google Scholar] [CrossRef]
- Ghorbani, M.; Dehmer, M.; Cao, S.; Feng, L.; Tao, J.; Emmert-Streib, F. On the zeros of the partial Hosoya polynomial of graphs. Inf. Sci. 2020, 524, 199–215. [Google Scholar] [CrossRef]
- Jachiymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Eskandar, A.; Aydi, H.; Arshad, M.; De la Sen, M. Hybrid Ćirić type graphic (Υ,Λ)-contraction mappings with applications to electric circuit and fractional differential equations. Symmetry 2020, 12, 467. [Google Scholar]
- Afshari, H.; Aydi, H.; Karapinar, E. On generalized α-ψ-Geraghty contractions on b-metric spaces. Georg. J. Math. 2020, 27, 9–21. [Google Scholar] [CrossRef]
- Karapinar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018. [Google Scholar] [CrossRef]
- Bollobás, B. Random Graphs, 2nd ed.; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Bonchev, D.; Trinajestić, N. Information theory, distance matrix and molecular branching. J. Chem. Phys. 1977, 67, 4517–4533. [Google Scholar] [CrossRef]
- Bonchev, D.; Rouvray, D.H. Introduction and Fundamentals. In Chemical Graph Theory; Abacus Press: New York, NY, USA, 1991. [Google Scholar]
- Dehmer, M. Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput. 2008, 201, 82–94. [Google Scholar] [CrossRef]
- Rashevsky, N. Life, information theory, and topology. Bull. Math. Biophys. 1955, 17, 229–235. [Google Scholar] [CrossRef]
- Mowshowitz, A. Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. Bull. Math. Biophys. 1968, 30, 175–204. [Google Scholar] [CrossRef]
- Gutman, I. The Energy of a Graph: Old and New Results. In Algebraic Combinatorics and Applications; Betten, A., Kohnert, A., Laue, R., Wassermann, A., Eds.; Springer: Berlin, Germany, 2001; pp. 196–211. [Google Scholar]
Edges | |||
---|---|---|---|
1 | |||
1 | |||
1 | |||
1 | |||
1 | |||
Edges | |||
---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbani, M.; Dehmer, M.; Emmert-Streib, F. On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials. Symmetry 2020, 12, 1643. https://doi.org/10.3390/sym12101643
Ghorbani M, Dehmer M, Emmert-Streib F. On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials. Symmetry. 2020; 12(10):1643. https://doi.org/10.3390/sym12101643
Chicago/Turabian StyleGhorbani, Modjtaba, Matthias Dehmer, and Frank Emmert-Streib. 2020. "On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials" Symmetry 12, no. 10: 1643. https://doi.org/10.3390/sym12101643
APA StyleGhorbani, M., Dehmer, M., & Emmert-Streib, F. (2020). On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials. Symmetry, 12(10), 1643. https://doi.org/10.3390/sym12101643