On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials
Abstract
:1. Introduction
2. Preliminaries
3. The Orbit and the Modified Orbit Polynomials
3.1. Orbit Polynomial of Line Graphs
3.2. Graph Classification with Respect to Orbit Polynomial
4. Orbit-Entropy Polynomial
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cvetković, D.; Doob, M.; Sachs, H. Spectra of Graphs Theory and Applications; Academic Press: Heidelberg, Germany, 1995. [Google Scholar]
- Hosoya, H. On some counting polynomials in chemistry. Applications of graphs in chemistry and physics. Discret. Appl. Math. 1988, 19, 239–257. [Google Scholar] [CrossRef] [Green Version]
- Gutman, I.; Harary, F. Generalizations of the matching polynomial. Util. Math. 1983, 24, 97–106. [Google Scholar]
- Gutman, I.; Bonchev, D.; Rouvray, D.H. Polynomials in Graph Theory. Chemical Graph Theory, Introduction and Fundamentals; Abacus Press: New York, NY, USA, 1991; pp. 133–176. [Google Scholar]
- Gutman, I.; Furtula, B.; Katanić, V. Randić index and information. AKCE Int. J. Graphs Comb. 2018, 15, 307–312. [Google Scholar] [CrossRef]
- Hosoya, H. Topological index, A newly proposed quantity characterizing the topological nautre of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 1971, 44, 2332–2339. [Google Scholar] [CrossRef] [Green Version]
- Hosoya, H. Clar’s aromatic sextet and sextet polynomial. Top. Curr. Chem. 1990, 153, 255–272. [Google Scholar]
- Farrell, E.J. An introduction to matching polynomials. J. Comb. Theory 1979, 27, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Gutman, I.; Hosoya, H. Molecular graphs with equal Zcounting and independence polynomials. Z. Naturforsch. 1990, 45, 645–648. [Google Scholar]
- Gutman, I. Some analytical properties of the independence and matching polynomials. Match Commun. Math. Comput. Chem. 1992, 28, 139–150. [Google Scholar]
- Stevanović, D.; Motoyama, A.; Hosoya, H. King and domino polynomials for polyomino graphs, Graph Theory Notes. J. Math. Phys. 1977, 34, 31–36. [Google Scholar]
- Balasubramanian, K.; Ramaraj, R. Computer generation of king and color polynomials of graphs and lattices and their applications to statistical mechanics. J. Comput. Chem. 1985, 6, 447–454. [Google Scholar] [CrossRef]
- Farrell, E.J.; De Matas, C.M. On star polynomials of complements of graphs. Ark. Mat. 1988, 26, 85–190. [Google Scholar] [CrossRef]
- Farrell, E.J.; De Matas, C.M. Star polynomials of some families of graphs with small cyclomatic numbers. Util. Math. 1988, 33, 33–45. [Google Scholar]
- Balasubramanian, K. On Graph Theoretical Polynomials in Chemistry. In Mathematical and Computational Concepts in Chemistry; Trinastic, N., Ed.; Ellis Horwood Ltd.: New York, NY, USA, 1986; pp. 20–33. [Google Scholar]
- Dehmer, M.; Chen, Z.; Emmert-Streibd, F.; Mowshowitz, A.; Varmuzag, K.; Jodlbauer, H.; Shih, Y.; Tripathi, S.; Tao, J. The orbit-polynomial: A novel measure of symmetry in graphs. IEEE Access 2020, 8, 36100–36112. [Google Scholar] [CrossRef]
- Dehmer, M.; Chen, Z.; Emmert-Streib, F.; Shi, Y.; Tripathi, S. Graph measures with high discrimination power revisited: A random polynomial approach. Inform. Sci. 2018, 467, 407–414. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Basak, S.C. Characterization of isospectral graphs using Ggraph invariants and derived orthogonal parameters. J. Chem. Inf. Comput. Sci. 1998, 38, 367–373. [Google Scholar] [CrossRef]
- Dixon, J.D.; Mortimer, B. Permutation Groups; Springer: New York, NY, USA, 1996. [Google Scholar]
- Harary, F. Graph Theory; Addison-Wesley Publishing Company: Boston, MA, USA, 1969. [Google Scholar]
- Dehmer, M.; Mowshowitz, A.; Shi, Y. Structural differentiation of graphs using Hosoya-based indices. PLoS ONE 2014, 7, e102459. [Google Scholar] [CrossRef] [PubMed]
- Dehmer, M.; Emmert-Streib, F.; Shi, Y. Graph distance measures based on topological indices revisited. Appl. Math. Comput. 2015, 266, 623–633. [Google Scholar] [CrossRef]
- Mowshowitz, A.; Dehmer, M. The Hosoya entropy of a graph. Entropy 2015, 17, 1054–1062. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, M.; Dehmer, M.; Rajabi-Parsa, M.; Emmert-Streib, F.; Mowshowitz, A. Hosoya entropy of fullerene graph. Appl. Math. Comput. 2019, 352, 88–98. [Google Scholar]
- Ghorbani, M.; Dehmer; Mowshowitz, A.; Emmert-Streib, F. The Hosoya entropy of graphs revisited. Symmetry 2019, 11, 1013. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, M.; Dehmer, M.; Cao, S.; Feng, L.; Tao, J.; Emmert-Streib, F. On the zeros of the partial Hosoya polynomial of graphs. Inf. Sci. 2020, 524, 199–215. [Google Scholar] [CrossRef]
- Jachiymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Eskandar, A.; Aydi, H.; Arshad, M.; De la Sen, M. Hybrid Ćirić type graphic (Υ,Λ)-contraction mappings with applications to electric circuit and fractional differential equations. Symmetry 2020, 12, 467. [Google Scholar]
- Afshari, H.; Aydi, H.; Karapinar, E. On generalized α-ψ-Geraghty contractions on b-metric spaces. Georg. J. Math. 2020, 27, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018. [Google Scholar] [CrossRef] [Green Version]
- Bollobás, B. Random Graphs, 2nd ed.; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Bonchev, D.; Trinajestić, N. Information theory, distance matrix and molecular branching. J. Chem. Phys. 1977, 67, 4517–4533. [Google Scholar] [CrossRef]
- Bonchev, D.; Rouvray, D.H. Introduction and Fundamentals. In Chemical Graph Theory; Abacus Press: New York, NY, USA, 1991. [Google Scholar]
- Dehmer, M. Information processing in complex networks: Graph entropy and information functionals. Appl. Math. Comput. 2008, 201, 82–94. [Google Scholar] [CrossRef]
- Rashevsky, N. Life, information theory, and topology. Bull. Math. Biophys. 1955, 17, 229–235. [Google Scholar] [CrossRef]
- Mowshowitz, A. Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. Bull. Math. Biophys. 1968, 30, 175–204. [Google Scholar] [CrossRef]
- Gutman, I. The Energy of a Graph: Old and New Results. In Algebraic Combinatorics and Applications; Betten, A., Kohnert, A., Laue, R., Wassermann, A., Eds.; Springer: Berlin, Germany, 2001; pp. 196–211. [Google Scholar]
Edges | |||
---|---|---|---|
1 | |||
1 | |||
1 | |||
1 | |||
1 | |||
Edges | |||
---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbani, M.; Dehmer, M.; Emmert-Streib, F. On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials. Symmetry 2020, 12, 1643. https://doi.org/10.3390/sym12101643
Ghorbani M, Dehmer M, Emmert-Streib F. On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials. Symmetry. 2020; 12(10):1643. https://doi.org/10.3390/sym12101643
Chicago/Turabian StyleGhorbani, Modjtaba, Matthias Dehmer, and Frank Emmert-Streib. 2020. "On the Degeneracy of the Orbit Polynomial and Related Graph Polynomials" Symmetry 12, no. 10: 1643. https://doi.org/10.3390/sym12101643