A Class of Critical Magnetic Fractional Kirchhoff Problems
Abstract
:1. Introduction
- There exists , such that:
- for every , there exists such that for all ;
- there exists a positive such that for all
- There exist and a nonnegative function such that for all , where ;
- a.e. , ;
2. Variational Setup
- (i)
- there exist such that for all , ;
- (ii)
- there exists satisfying such that . Define:
3. Proof of the Main Result
4. Conclusions and Further Research
Author Contributions
Funding
Conflicts of Interest
References
- Lieb, E.H.; Loss, M. Analysis; American Mathematical Society: Providence, RI, USA, 2001; Volume 14. [Google Scholar]
- Ambrosio, V. Existence and concentration results for some fractional Schrödinger equations in with magnetic fields. Commun. Part Diff. Equ. 2019, 44, 637–680. [Google Scholar] [CrossRef]
- Ambrosio, V.; d’Avenia, P. Nonlinear fractional magnetic Schrödinger equation: Existence and multiplicity. J. Differ. Equ. 2018, 264, 3336–3368. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.-M.; Pinamonti, A.; Squassina, M.; Vecchi, E. Some characterizations of magnetic Sobolev spaces. Complex Var. Elliptic Equ. 2018. [Google Scholar] [CrossRef]
- Pinamonti, A.; Squassina, M.; Vecchi, E. The Maz′ya-Shaposhnikova limit in the magnetic setting. J. Math. Anal. Appl. 2017, 449, 1152–1159. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Repovš, D.; Zhang, B. On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity. Comput. Math. Appl. 2018, 75, 1778–1794. [Google Scholar]
- Fiscella, A.; Valdinoci, E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Fiscella, A.; Vecchi, E. Bifurcation and multiplicity results for critical magnetic fractional problems. Electron. J. Diff. Equ. 2018, 153, 1–18. [Google Scholar]
- Libo, Y.; Tianqing, A. Infinitely many solutions for magnetic fractional problems with critical Sobolev-Hardy nonlinearities. Math. Methods Appl. Sci. 2018, 41, 9607–9617. [Google Scholar]
- David, A. Lévy processes-From probability to finance quantum groups. Notices Amer. Math. Soc. 2004, 51, 1336–1347. [Google Scholar]
- Servadei, R.; Valdinoci, E. Fractional Laplacian equations with critical Sobolev exponent. Rev. Mat. Complut. 2015, 28, 655–676. [Google Scholar] [CrossRef]
- Autuori, G.; Fiscella, A.; Pucci, P. Stationary Kirchhoff problems involving a fractional operator and a critical nonlinearity. Nonlinear Anal. 2015, 125, 699–714. [Google Scholar] [CrossRef] [Green Version]
- Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Jiabin, Z.; Tianqing, A.; Mingwei, L. Superlinear Kirchhoff-type problems of the fractional p-Laplacian without the (AR) condition. Bound. Value Probl. 2018, 180. [Google Scholar] [CrossRef]
- Jiabin, Z.; Tianqing, A.; Libo, Y.; Xiangsheng, R. The Nehari manifold for a fractional p-Kirchhoff system involving sign-changing weight function and concave-convex nonlinearities. J. Funct. Spaces. Art. 2019, 2019, 7624373. [Google Scholar]
- Jiabin, Z.; Tianqing, A.; Wei, L. A variational inequality of Kirchhoff-type in . J. Inequal. Appl. 2018, 329. [Google Scholar] [CrossRef]
- Colasuonno, F.; Pucci, P. Multiplicity of solutions for p(x)-polyharmonic Kirchhoff equations. Nonlinear Anal. 2011, 74, 5962–5974. [Google Scholar] [CrossRef]
- Binlin, Z.; Squassina, M.; Xia, Z. Fractional NLS equations with magnetic filed, critical frequency and critical growth. Manuscr. Math. 2018, 155, 115–140. [Google Scholar] [CrossRef] [Green Version]
- d’Avenia, P.; Squassina, M. Ground states for fractional magnetic operators. ESAIM Control Optim. Calc. Var. 2018, 24, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Fuliang, W.; Mingqi, X. Multiplicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent. Electron. J. Diff. Equ. 2016, 306, 1–11. [Google Scholar]
- Mingqi, X.; Pucci, P.; Squassina, M.; Zhang, B.L. Nonlocal Schrödinger-Kirchhoff equations with external magnetic filed. Discrete Contin. Dyn. Syst. A 2017, 37, 503–521. [Google Scholar]
- Mingqi, X.; Rădulescu, V.D.; Zhang, B. A critical fractional Choquard-Kirchhoff problem with magnetic field. Commun. Contemp. Math. 2019. [Google Scholar] [CrossRef]
- Nguyen, H.-M.; Pinamonti, A.; Squassina, M.; Vecchi, E. New characterizations of magnetic Sobolev spaces. Adv. Nonlinear Anal. 2018, 7, 227–245. [Google Scholar] [CrossRef] [Green Version]
- Squassina, M.; Volzone, B. Bourgain-Brezis-Mironescu formula for magnetic operators. C. R. Math. Acad. Sci. 2016, 354, 825–831. [Google Scholar] [CrossRef]
- Evans, L.C. Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Fiscella, A.; Pinamonti, A.; Vecchi, E. Multiplicity results for magnetic fractional problems. J. Differ. Equ. 2017, 263, 4617–4633. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. Mountain Pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 2012, 389, 887–898. [Google Scholar] [CrossRef] [Green Version]
- Brézis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: New York, NY, USA, 2011. [Google Scholar]
- Brézis, H.; Lieb, E. A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 1983, 88, 486–490. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, J.; An, T.; Ye, G. A Class of Critical Magnetic Fractional Kirchhoff Problems. Symmetry 2020, 12, 76. https://doi.org/10.3390/sym12010076
Zuo J, An T, Ye G. A Class of Critical Magnetic Fractional Kirchhoff Problems. Symmetry. 2020; 12(1):76. https://doi.org/10.3390/sym12010076
Chicago/Turabian StyleZuo, Jiabin, Tianqing An, and Guoju Ye. 2020. "A Class of Critical Magnetic Fractional Kirchhoff Problems" Symmetry 12, no. 1: 76. https://doi.org/10.3390/sym12010076
APA StyleZuo, J., An, T., & Ye, G. (2020). A Class of Critical Magnetic Fractional Kirchhoff Problems. Symmetry, 12(1), 76. https://doi.org/10.3390/sym12010076