# Quantum Correction for Newton’s Law of Motion

## Abstract

**:**

## 1. Introduction

## 2. Why Newton’s Law of Motion is a Second-Order Derivative Equation

## 3. Stability Principle

## 4. Quantum Correlations and Illusion of Superluminal Interaction

## 5. Quantum Correction to Newton’s Second Law

## 6. Dark Metric for Matter and Energy

## 7. Macroexamples of Noninertial Mechanics

## 8. Verifications of High-Order Derivatives as Nonlocal Hidden Variables

## 9. Conclusions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Chetayev, N.G. On stable trajectories in dynamics. Math. Proc. Kazan State Univ.
**1931**, 91, 3–8. [Google Scholar] - Ostrogradsky, M.V. Memoires sur les equations differentielles relatives au probleme des isoperimetres. Mem. Acad. St. Petersburg
**1850**, 6, 385. [Google Scholar] - Kamalov, T.F. Classical and quantum-mechanical axioms with the higher time derivative formalism. J. Phys. Conf. Ser.
**2013**, 442, 012051. [Google Scholar] [CrossRef] - Kamalov, T.F. Quantum Extension for Newton’s Law of Motion. J. Phys. Conf. Ser.
**2019**, 1251, 012022. [Google Scholar] [CrossRef] - Kamalov, T.F. Axiomatizing of Mechanics. Quantum Comput. Comput.
**2011**, 11, 52–57. [Google Scholar] - Kamalov, T.F. Instability States and Ostrogradsky Formalism. J. Phys. Conf. Ser.
**2018**, 1051, 012033. [Google Scholar] [CrossRef] - Kamalov, T.F. Simulation the nuclear interaction. In Particle Physics on the Eve of LHC; Studenikin, A.I., Ed.; World Scientific: Singapore, 2010; pp. 439–442. [Google Scholar]
- Capozziello, S.; De Laurentis, M.; Francaviglia, M.; Mercadante, S. From Dark Energy and Dark Matter to Dark Metric. Found. Phys.
**2009**, 39, 1161–1176. [Google Scholar] [CrossRef] [Green Version] - Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D
**1994**, 50, 3874. [Google Scholar] [CrossRef] [Green Version] - Ward, B.F.L. Quantum Corrections to Newton’s Laws. Mod. Phys. Lett. A
**2002**, 17, 2371–2382. [Google Scholar] [CrossRef] [Green Version] - Blekhman, I.I. Vibrational Mechanics; World Scientific: Singapore, 2000. [Google Scholar]
- El-Nabulsi, R.A. Non-Standard Non-Local-in-Time Lagrangians in Classical Mechanics. Qual. Theory Dyn. Syst.
**2014**, 13, 149–160. [Google Scholar] [CrossRef] - Musielak, Z.E.; Fry, J.L.; Kanan, G.W. New fundamental dynamical equation for higher derivative quantum field theories. Adv. Stud. Theor. Phys.
**2015**, 9, 213–232. [Google Scholar] [CrossRef] - El-Nabulsi, R.A. Fourth-Order Ginzburg-Landau differential equation a la Fisher-Kolmogorov and quantum aspects of superconductivity. Phys. C Supercond. Appl.
**2019**, 567, 1353545. [Google Scholar] [CrossRef] - Musielak, Z.E. General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals
**2009**, 42, 2645–2652. [Google Scholar] [CrossRef] - El-Nabulsi, R.A. Jerk in Planetary Systems and Rotational Dynamics, Nonlocal Motion Relative to Earth and Nonlocal Fluid Dynamics in Rotating Earth Frame. Earth Moon Planets
**2018**, 122, 15–41. [Google Scholar] [CrossRef] - El-Nabulsi, R.A. Quantization of Non-standard Hamiltonians and the Riemann Zeros. Qual. Theory Dyn. Syst.
**2019**, 18, 69–84. [Google Scholar] [CrossRef] - Suykens, J.A.K. Extending Newtons law from nonlocal-in-time kinetic energy. Phys. Lett. A
**2009**, 373, 1211. [Google Scholar] [CrossRef] - El-Nabulsi, R.A. The Hamilton-Jacobi Analysis of Powers of Singular Lagrangians: A Connection Between the Modified Schredinger and the Navier-Stokes Equations. Qual. Theory Dyn. Syst.
**2018**, 17, 583–608. [Google Scholar] [CrossRef] - El-Nabulsi, R.A. Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics. Adv. Space Res.
**2018**, 61, 2914–2931. [Google Scholar] [CrossRef] - El-Nabulsi, R.A. Complex Backward Forward Derivative Operator in Non-local-In-Time Lagrangians Mechanics. Qual. Theory Dyn. Syst.
**2017**, 16, 223–234. [Google Scholar] [CrossRef] - Musielak, Z.E. Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A
**2008**, 41, 055205–055222. [Google Scholar] [CrossRef] [Green Version] - El-Nabulsi, R.A. Nonlinear dynamics with non-standard Lagrangians. Qual. Theory Dyn. Syst.
**2013**, 13, 273–291. [Google Scholar] [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kamalov, T.F.
Quantum Correction for Newton’s Law of Motion. *Symmetry* **2020**, *12*, 63.
https://doi.org/10.3390/sym12010063

**AMA Style**

Kamalov TF.
Quantum Correction for Newton’s Law of Motion. *Symmetry*. 2020; 12(1):63.
https://doi.org/10.3390/sym12010063

**Chicago/Turabian Style**

Kamalov, Timur F.
2020. "Quantum Correction for Newton’s Law of Motion" *Symmetry* 12, no. 1: 63.
https://doi.org/10.3390/sym12010063