Hermite–Hadamard and Fejér Inequalities for Co-Ordinated (F,G)-Convex Functions on a Rectangle
Abstract
:1. Introduction
2. Results
2.1. Hermite–Hadamard Type Inequalities
2.2. Fejér Type Inequalities
- (i)
- Ifandthen
- (ii)
- Ifandthen
3. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Dragomir, S.S. On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2008, 5, 775–788. [Google Scholar] [CrossRef]
- Tahir, A.; Khan, M.A.; Kilicman, A.; Din, Q. On the refined Hermite–Hadamard inequalities. Math. Sci. Appl. E-Notes 2018, 6, 85–92. [Google Scholar]
- Hwang, D.Y.; Tseng, K.L.; Yang, G.H. Some Hadamard’s inequalities for co-ordinated convex functions in a rectangle from the plane. Taiwan. J. Math. 2007, 11, 63–73. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M. Fejér inequality for double integrals. Facta Universitatis (NIŜ) Ser. Math. Inform. 2009, 24, 15–28. [Google Scholar]
- Házy, A.; Páles, Z. On approximately midconvex functions. Bull. Lond. Math. Soc. 2004, 36, 339–350. [Google Scholar] [CrossRef]
- Hyers, D.H.; Ulam, S.M. Approximately convex functions. Proc. Am. Math. Soc. 1952, 3, 821–828. [Google Scholar] [CrossRef]
- Makó, J.; Páles, Z. Approximate convexity and Takagi type function. J. Math. Anal. Appl. 2010, 369, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Makó, J.; Páles, Z. On ϕ-convexity. Publ Math. Debr. 2012, 80, 107–126. [Google Scholar]
- Tabor, J.; Tabor, J.; Żołdak, M. Approximately convex functions on topological vector spaces. Publ. Math. Debr. 2010, 77, 115–123. [Google Scholar]
- Adamek, M. On a generalization of sandwich type theorem. Aequat. Math. 2018, 92, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Polyak, B.T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 1966, 7, 72–75. [Google Scholar]
- Cannarsa, P.; Sinestrari, C. Semiconvex Functions, Hamilton-Jacobi Equation and Optimal Control; Progress in Nonlinear Differential Equations and Their Applications; Birkhäuser: Boston, MA, USA, 2004. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chudziak, M.; Żołdak, M. Hermite–Hadamard and Fejér Inequalities for Co-Ordinated (F,G)-Convex Functions on a Rectangle. Symmetry 2020, 12, 13. https://doi.org/10.3390/sym12010013
Chudziak M, Żołdak M. Hermite–Hadamard and Fejér Inequalities for Co-Ordinated (F,G)-Convex Functions on a Rectangle. Symmetry. 2020; 12(1):13. https://doi.org/10.3390/sym12010013
Chicago/Turabian StyleChudziak, Małgorzata, and Marek Żołdak. 2020. "Hermite–Hadamard and Fejér Inequalities for Co-Ordinated (F,G)-Convex Functions on a Rectangle" Symmetry 12, no. 1: 13. https://doi.org/10.3390/sym12010013
APA StyleChudziak, M., & Żołdak, M. (2020). Hermite–Hadamard and Fejér Inequalities for Co-Ordinated (F,G)-Convex Functions on a Rectangle. Symmetry, 12(1), 13. https://doi.org/10.3390/sym12010013