# Dynamical Triangulation Induced by Quantum Walk

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Recap: Quantum Walk on the Triangular Grid and Pachner Moves

#### 2.1. Quantum Walk on the Triangular Grid

- first, rotate each triangle according to its label: if triangle v’s label is s, we set$${\tilde{\psi}}^{s}\left(\right)open="("\; close=")">t+\frac{\u03f5}{2},v,k$$
- then, apply a unitary to each edge:$$\tilde{\psi}(t+\u03f5,v,k)=W\tilde{\psi}\left(\right)open="("\; close=")">t+\frac{\u03f5}{2},v,k$$

#### 2.2. Pachner Moves

## 3. Coupling the Quantum Walker with Pachner Moves

#### 3.1. The Grid

#### 3.2. Evolution of the Grid under Pachner Moves

**Lemma**

**1.**

**Proof.**

**Corollary**

**1.**

#### 3.3. The Quantum Walker

- first, each triangle rotates its internal components: if triangle v’s label is $({s}_{1},{s}_{2},{s}_{3})$,$${\tilde{\psi}}^{{s}_{k}}\left(\right)open="("\; close=")">t+\frac{\u03f5}{2},v,k$$
- second, we apply W to each edge:$$\tilde{\psi}(t+\u03f5,v,k)=W\tilde{\psi}\left(\right)open="("\; close=")">t+\frac{\u03f5}{2},v,k$$

- third, we apply the Pachner moves for this timestep.

#### 3.4. Evolution of the Walker during $1-\mathrm{to}-3$ and $2-\mathrm{to}-2$ Pachner Moves

#### 3.5. Evolution of the Walker during $3-\mathrm{to}-1$ Pachner Moves

**Lemma**

**2.**

**Proof.**

#### 3.6. When to Make Pachner Moves

## 4. Discrete Equation of the Walker

**Notation**

**1.**

**Notation**

**2.**

- if triangle v’s label is $({s}_{1},{s}_{2},{s}_{3})$, we write:$$\psi (t,v:k)={\psi}^{{s}_{k}}(t,v,k)$$$$\psi (t,v:k:v.k)=\psi (t,v,k)$$
- if triangle v carries the ↑ component of its $k-\mathrm{th}$ side and its neighbor $v.k$ on that side carries the ↓ component, we write:$$\psi \left(\right)open="("\; close=")">t,\begin{array}{c}v\\ k\\ v.k\end{array}$$

## 5. Numerical Simulations

## 6. Summary and Future Work

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Arrighi, P.; Grattage, J. Partitioned quantum cellular automata are intrinsically universal. Nat. Comput.
**2012**, 11, 13–22. [Google Scholar] [CrossRef][Green Version] - Costa, P.C.; Portugal, R.; de Melo, F. Quantum walks via quantum cellular automata. Quantum Inf. Process.
**2018**, 17, 226. [Google Scholar] [CrossRef][Green Version] - Ambainis, A.; Childs, A.M.; Reichardt, B.W.; Špalek, R.; Zhang, S. Any AND-OR formula of size N can be evaluated in time N^1/2+o(1) on a quantum computer. SIAM J. Comput.
**2010**, 39, 2513–2530. [Google Scholar] [CrossRef] - Wang, G. Efficient quantum algorithms for analyzing large sparse electrical networks. Quantum Inf. Comput.
**2017**, 17, 987–1026. [Google Scholar] - Guillet, S.; Roget, M.; Arrighi, P.; Di Molfetta, G. The Grover search as a naturally occurring phenomenon. arXiv
**2019**, arXiv:1908.11213. [Google Scholar] - Bialynicki-Birula, I. Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D
**1994**, 49, 6920. [Google Scholar] [CrossRef][Green Version] - Meyer, D.A. From quantum cellular automata to quantum lattice gases. J. Stat. Phys.
**1996**, 85, 551–574. [Google Scholar] [CrossRef][Green Version] - Feynman, R.P. Simulating physics with computers. Int. J. Theor. Phys.
**1982**, 21, 467–488. [Google Scholar] [CrossRef] - Genske, M.; Alt, W.; Steffen, A.; Werner, A.H.; Werner, R.F.; Meschede, D.; Alberti, A. Electric quantum walks with individual atoms. Phys. Rev. Lett.
**2013**, 110, 190601. [Google Scholar] [CrossRef] - Sansoni, L.; Sciarrino, F.; Vallone, G.; Mataloni, P.; Crespi, A.; Ramponi, R.; Osellame, R. Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett.
**2012**, 108, 010502. [Google Scholar] [CrossRef][Green Version] - Di Molfetta, G.; Brachet, M.; Debbasch, F. Quantum walks as massless Dirac fermions in curved space-time. Phys. Res. A
**2013**, 88, 042301. [Google Scholar] [CrossRef][Green Version] - Di Molfetta, G.; Pérez, A. Quantum walks as simulators of neutrino oscillations in a vacuum and matter. New J. Phys.
**2016**, 18, 103038. [Google Scholar] [CrossRef] - Di Molfetta, G.; Arrighi, P. A quantum walk with both a continuous-time limit and a continuous-spacetime limit. Quantum Inf. Process.
**2020**, 19, 47. [Google Scholar] [CrossRef] - Arrighi, P.; Nesme, V.; Forets, M. The Dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A Math. Theor.
**2014**, 47, 465302. [Google Scholar] [CrossRef][Green Version] - Arrighi, P.; Facchini, S.; Forets, M. Discrete Lorentz covariance for quantum walks and quantum cellular automata. New J. Phys.
**2014**, 16, 093007. [Google Scholar] [CrossRef] - Bisio, A.; D’Ariano, G.M.; Perinotti, P. Quantum Walks, Weyl equation and the Lorentz group. Found. Phys.
**2017**, 47, 1065–1076. [Google Scholar] [CrossRef][Green Version] - Lloyd, S. A theory of quantum gravity based on quantum computation. arXiv
**2005**, arXiv:quant-ph/0501135. [Google Scholar] - Regge, T. General relativity without coordinates. Il Nuovo Cimento (1955–1965)
**1961**, 19, 558–571. [Google Scholar] [CrossRef] - Ambjorn, J.; Carfora, M.; Marzuoli, A. The Geometry of Dynamical Triangulations; Springer Science & Business Media: Berlin, Germany, 1997; Volume 50. [Google Scholar]
- Love, P.J.; Boghosian, B.M.; Meyer, D.A. Lattice gas simulations of dynamical geometry in one dimension. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
**2004**, 362, 1667–1675. [Google Scholar] [CrossRef][Green Version] - Klales, A.; Cianci, D.; Needell, Z.; Meyer, D.A.; Love, P.J. Lattice gas simulations of dynamical geometry in two dimensions. Phys. Rev. E.
**2010**, 82, 046705. [Google Scholar] [CrossRef][Green Version] - Arrighi, P.; Martiel, S.; Nesme, V. Cellular automata over generalized Cayley graphs. Math. Struct. Comput. Sci.
**2018**, 28, 340–383. [Google Scholar] [CrossRef][Green Version] - Arrighi, P.; Di Molfetta, G.; Márquez, I.; Pérez, A. Dirac equation as a quantum walk over the honeycomb and triangular lattices. Phys. Rev. A
**2018**, 97, 062111. [Google Scholar] [CrossRef][Green Version] - Arrighi, P.; Di Molfetta, G.; Márquez, I.; Pérez, A. From curved spacetime to spacetime-dependent local unitaries over the honeycomb and triangular Quantum Walks. arXiv
**2018**, arXiv:1812.02601. [Google Scholar] [CrossRef] [PubMed][Green Version] - da Silva, D.C.; Bianconi, G.; da Costa, R.A.; Dorogovtsev, S.N.; Mendes, J.F. Complex network view of evolving manifolds. Phys. Rev. E
**2018**, 97, 032316. [Google Scholar] [CrossRef][Green Version] - Freund, R.; Hospodár, M.; Jirásková, G.; Pighizzini, G. (Eds.) Causal Dynamics of Discrete Manifolds; Österreichische Computer Gesellschaft: Vienna, Austria, 2018. [Google Scholar]
- Kivshar, Y.S.; Malomed, B.A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys.
**1989**, 61, 763. [Google Scholar] [CrossRef] - Kerr, W.C.; Lomdahl, P. Quantum-mechanical derivation of the equations of motion for Davydov solitons. Phys. Rev. B
**1987**, 35, 3629. [Google Scholar] [CrossRef][Green Version] - Shikano, Y.; Wada, T.; Horikawa, J. Discrete-time quantum walk with feed-forward quantum coin. Sci. Rep.
**2014**, 4, 4427. [Google Scholar] [CrossRef][Green Version] - Di Molfetta, G.; Debbasch, F.; Brachet, M. Nonlinear optical galton board: Thermalization and continuous limit. Phys. Rev. E
**2015**, 92, 042923. [Google Scholar] [CrossRef][Green Version] - Arrighi, P.; Dowek, G. The principle of a finite density of information. In Irreducibility and Computational Equivalence; Springer: Berlin/Heidelberg, Germany, 2013; pp. 127–134. [Google Scholar]
- Cruzeiro-Hansson, L.; Kenkre, V. Localized versus delocalized ground states of the semiclassical Holstein Hamiltonian. Phys. Lett. A
**1994**, 190, 59–64. [Google Scholar] [CrossRef]

**Figure 5.**Time goes down with one time step between each figure vertically. x and y axis are spatial dimensions. On the left is the evolution of the usual quantum walk, on the right is the evolution of the walk with Pachner moves.

**Figure 8.**Translation of the component internal to w on its first side during a $3-\mathrm{to}-1$ Pachner move.

**Figure 10.**From the left to the right: (

**a**) Number of wells (

**top**) and local curvature (

**bottom**) in a ball of a radius 1, with $\beta =3\alpha $, fit as ${t}^{a}{e}^{-b{t}^{2}}c$; (

**b**) The parameter b as function of $\alpha $; (

**c**) The time $\mathtt{tmax}$ of the exponential cut as function of $\alpha $. The initial condition $\psi (t=0)=\frac{1}{\sqrt{3}}$ on each of the three internal components of the origin triangle and 0 elsewhere.

**Figure 11.**Gradient of the logarithm of the variance with $\beta =3\alpha $: it always converges to 2. The initial condition $\psi (t=0)=\frac{1}{\sqrt{3}}$ on each of the three internal components of the origin triangle and 0 elsewhere.

**Figure 12.**Heatmap after 100 steps of evolution. On the left $\alpha ={10}^{-4}$, on the right $\alpha ={10}^{-1}$. In both case $\beta =3\alpha $.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Aristote, Q.; Eon, N.; Di Molfetta, G.
Dynamical Triangulation Induced by Quantum Walk. *Symmetry* **2020**, *12*, 128.
https://doi.org/10.3390/sym12010128

**AMA Style**

Aristote Q, Eon N, Di Molfetta G.
Dynamical Triangulation Induced by Quantum Walk. *Symmetry*. 2020; 12(1):128.
https://doi.org/10.3390/sym12010128

**Chicago/Turabian Style**

Aristote, Quentin, Nathanaël Eon, and Giuseppe Di Molfetta.
2020. "Dynamical Triangulation Induced by Quantum Walk" *Symmetry* 12, no. 1: 128.
https://doi.org/10.3390/sym12010128