# UAV Group Formation Collision Avoidance Method Based on Second-Order Consensus Algorithm and Improved Artificial Potential Field

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Consensus Algorithm

#### 2.1. Graph Theory

#### 2.2. Artificial Potential Field Method

## 3. Second-Order Consensus Formation Control Model and Improved UAV Collision Avoidance Method

#### 3.1. Formation Control Continuous Time Domain Model

#### 3.2. Discretized Data Processing

#### 3.3. Path Optimization Based on Improved Artificial Potential Field Method

#### 3.4. UAV Formation Keeps Cluster Collision Avoidance Method

## 4. Simulation Case

#### 4.1. Static Obstacle Scene

#### 4.2. Dynamic Obstacle Scene

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Fax, J.A.; Murray, R.M. Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control.
**2003**, 49, 1465–1476. [Google Scholar] [CrossRef] - Jadbabaie, A.; Lin, J.; Morse, A.S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control.
**2003**, 48, 998–1001. [Google Scholar] - Lawton, J.; Beard, R.; Young, B. A decentralized approach to formation maneuvers. IEEE Trans. Robot. Autom.
**2003**, 19, 933–941. [Google Scholar] [CrossRef] [Green Version] - Leonard, N.E.; Ogren, P. Obstacle avoidance in formation. IEE Icra
**2003**, 2, 2492–2497. [Google Scholar] - Tang, J.; Piera, M.A.; Guasch, T. Coloured Petri net-based traffic collision avoidance system encounter model for the analysis of potential induced collision. Transp. Res. Part. C: Emerg. Technol.
**2016**, 67, 357–377. [Google Scholar] [CrossRef] - Tang, J.; Zhu, F.; Piera, M.A. A causal encounter model of traffic collision avoidance system operations for safety assessment and advisory optimization in high-density airspace. Transp. Res. Part. C: Emerg. Technol.
**2018**, 96, 347–365. [Google Scholar] [CrossRef] - Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and cooperation in networked multi-agent systems. Proc. IEEE
**2007**, 95, 215–233. [Google Scholar] [CrossRef] - Chen, Y.Q.; Wang, Z. Formation control: A review and a new consideration. Intelligent Robots and Systems. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005. [Google Scholar]
- Cao, Y.; Yu, W.; Ren, W.; Chen, G. An overview of recent progress in the study of distributed multi- agent coordination. IEEE Trans. Ind. Inform.
**2013**, 9, 427–438. [Google Scholar] [CrossRef] - Ren, W.; Beard, R. Consensus seeking in multi-agent systems using dynamically changing interaction topologies. IEEE Trans. Autom. Control.
**2005**, 50, 655–661. [Google Scholar] [CrossRef] - Ren, W.; Beard, R. Consensus of information under dynamically changing interaction topologies. In Proceedings of the American Control Conference, Boston, MA, USA, 30 June–2 July 2004; pp. 4939–4944. [Google Scholar]
- Olfati-Saber, R.; Murray, R. Agreement problems in networks with directed graphs and switching topology. In Proceedings of the IEEE Conference on Decision and Control, Maui, HI, USA, 9–12 December 2003; pp. 4126–4132. [Google Scholar]
- Olfati-Saber, R.; Murray, R. Consensus protocols for networks of dynamic agents. In Proceedings of the American Control Conference, Denver, CO, USA, 4–6 June 2003; pp. 951–956. [Google Scholar]
- Jun, T.; Yang, W. A causal model for safety assessment purposes in opening the low-altitude urban airspace of chinese pilot cities. J. Adv. Transp.
**2018**, 2018, 1–18. [Google Scholar] - Luongo, S.; Corraro, F.; Ciniglio, U.; Di Vito, V.; Moccia, A. A novel 3d analytical algorithm for autonomous collision avoidance considering cylindrical safety bubble. In Proceedings of the 2010 IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2010; pp. 1–13. [Google Scholar]
- Park, J.W.; Oh, H.D.; Tahk, M.J. Uav collision avoidance based on geometric approach. In Proceedings of the 2008 SICE Annual Conference, Tokyo, Japan, 20–22 August 2008. [Google Scholar]
- Chakravarthy, A.; Ghose, D. Obstacle avoidance in a dynamic environment: A collision cone approach. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
**1998**, 28, 562–574. [Google Scholar] [CrossRef] - Carbone, C.; Ciniglio, U.; Corraro, F.; Luongo, S. A novel 3d geometric algorithm for aircraft autonomous collision avoidance. In Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15 December 2006; pp. 1580–1585. [Google Scholar]
- Fasano, G.; Accardo, D.; Moccia, A.; Luongo, S.; Di Vito, V. In-flight performance analysis of a non-cooperative radar-based sense and avoid system. J. Proc. Inst. Mech. Eng. Part. G J. Aerosp. Eng.
**2016**, 230, 1592–1604. [Google Scholar] [CrossRef] - Orefice, M.; Vito, V.D.; Torrano, G. Sense and avoid: Systems and methods. In Encyclopedia of Aerospace Engineering; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Sigurd, K.; How, J. Uav trajectory design using total field collision avoidance. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, TX, USA, 11–13 August 2003; p. 5728. [Google Scholar]
- Liu, J.Y.; Guo, Z.Q.; Liu, S.Y. The simulation of the uav collision avoidance based on the artificial potential field method. Adv. Mater. Res.
**2012**, 591, 1400–1404. [Google Scholar] [CrossRef] - Ruchti, J.; Senkbeil, R.; Carroll, J.; Dickinson, J.; Holt, J.; Biaz, S. Unmanned aerial system collision avoidance using artificial potential fields. J. Aerosp. Inf. Syst.
**2014**, 11, 140–144. [Google Scholar] [CrossRef] - Yoshiaki, K. Real-Time Trajectory Design for Unmanned Aerial Vehicles Using Receding Horizontal Control; Massachusetts Institute of Technology: Cambridge, MA, USA, 2003. [Google Scholar]
- Mavrovouniotis, M.; Yang, S.; Yao, X. Multi-colony ant algorithms for the dynamic travelling salesman problem. In Proceedings of the 2014 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), Singapore, 16–19 April 2014; pp. 9–16. [Google Scholar]
- Kim, D.H.; Shin, S. Local path planning using a new artificial potential function composition and its analytical design guidelines. Adv. Robot.
**2005**, 20, 115–135. [Google Scholar] [CrossRef] - Vascak, J. Navigation of Mobile Robots Using Potential Fields and Computational Intelligence Means. Acta Polytech. Hung.
**2007**, 4, 63–74. [Google Scholar] - McIntyre, D.; Naeem, W.; Xu, X.D. Cooperative Obstacle Avoidance using Bidirectional Artificial Potential Fields. In Proceedings of the 11th UKACC Control, Belfast, UK, 31 August–2 September 2016; pp. 1–6. [Google Scholar]
- Chen, Y.B.; Luo, G.C.; Mei, Y.S.; Yu, J.Q.; Su, X.L. UAV trajectory planning using artificial potential field method updated by optimized control theory. Int. J. Syst. Sci.
**2014**, 45, 1407–1420. [Google Scholar]

**Figure 3.**Collision avoidance direction selection algorithm based on artificial potential field method.

**Figure 4.**Unmanned aerial vehicle (UAV) formation flying collision avoidance method based on consensus algorithm.

UAV | Initial Position (m, m) | Initial Velocity (m/s, m/s) |
---|---|---|

Follower 1 | (0, 0) | (5, 0) |

Follower 2 | (60, 5) | (0, 3) |

Follower 3 | (30, 50) | (2, 2) |

Leader | (20, 20) | (1, 1) |

Group | UAV | Initial Position (m, m) | Initial Velocity (m/s, m/s) |
---|---|---|---|

Group 1 | Follower 1 | (0, 0) | (5, 0) |

Follower 2 | (10, 25) | (0, 3) | |

Follower 3 | (0, 50) | (2, 2) | |

Leader | (20, 20) | (1, 1) | |

Group 2 | Follower 1 | (190, 180) | (−5, −5) |

Follower 2 | (210, 155) | (−3, −3) | |

Follower 3 | (180, 200) | (−2, −2) | |

Leader | (170, 170) | (−1, −1) |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Huang, Y.; Tang, J.; Lao, S.
UAV Group Formation Collision Avoidance Method Based on Second-Order Consensus Algorithm and Improved Artificial Potential Field. *Symmetry* **2019**, *11*, 1162.
https://doi.org/10.3390/sym11091162

**AMA Style**

Huang Y, Tang J, Lao S.
UAV Group Formation Collision Avoidance Method Based on Second-Order Consensus Algorithm and Improved Artificial Potential Field. *Symmetry*. 2019; 11(9):1162.
https://doi.org/10.3390/sym11091162

**Chicago/Turabian Style**

Huang, Yang, Jun Tang, and Songyang Lao.
2019. "UAV Group Formation Collision Avoidance Method Based on Second-Order Consensus Algorithm and Improved Artificial Potential Field" *Symmetry* 11, no. 9: 1162.
https://doi.org/10.3390/sym11091162