Orientation of Chiral Schiff Base Metal Complexes Involving Azo-Groups for Induced CD on Gold Nanoparticles by Polarized UV Light Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Procedures and Preparations
2.2. Characterization of Complexes
2.3. Physical Measurements
2.4. Computational Methods
3. Results and Discussion
3.1. Simulated CD Spectra with TD-DFT
3.2. CD and UV-vis Spectra before Irradiation
3.3. CD and UV-vis Spectra after Irradiation
4. Discussion
4.1. Proposed Contacting Features between AuNP and Chiral Complexes
4.2. Proposed Changes Due to Trans- to Cis-Photoisomerization
4.3. Weigert Effect Caused by Linearly Polarized UV Light
4.4. Dipole-Dipole Interaction within the Exciton Framework
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berova, N.; Bari, L.D.; Pescitelli, G. Application of electronic circular dichloism in configurational and conformational analysis of organic compounds. Chem. Soc. Rev. 2007, 36, 914–931. [Google Scholar] [CrossRef] [PubMed]
- Raval, R. Chiral expression from molecular assemblies at metal surfaces: insights from surface science techniques. Chem. Soc. Rev. 2009, 38, 707–721. [Google Scholar] [CrossRef] [PubMed]
- Gautier, C.; Burgi, T. Chiral Gold Nanoparticles. Chem. Phys. Chem. 2009, 10, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Govorov, A.O.; Fan., Z.; Hernandez, P.; Slocik, J.M.; Naik, R.R. Theory of Circular Dichroism of Nanomatrials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects. Nano. Lett. 2010, 10, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Govorov, A.O.; Fan, Z. Theory of Chiral Plasmonic Nanostructuers Comprising Metal Nanocrystals and Chiral Molecular Media. Chem. Phys. Chem. 2012, 13, 2551–2560. [Google Scholar] [CrossRef] [PubMed]
- Young, A.J.; Serpell, C.J.; Chin, J.M.; Reithofer, M.R. Optically active hisidin-2-ylidene stabilized gold nanoperticles. Chem. Commun. 2017, 53, 12426–12429. [Google Scholar] [CrossRef]
- Morales-Vidal, J.; Lopez, N.; Othuno, M.A. Chirality Transfer in Gold Nanoparticles by L-Cystein Amino Acid: A First-Principle Study. J. Phys. Chem. C 2019, 123, 13758–13764. [Google Scholar] [CrossRef]
- Lee, H.-E.; Ahn, H.-Y.; Mun, J.; Lee, Y.Y.; Kim, M.; Cho, N.H.; Chang, K.; Kim, W.S.; Rho, J.; Nam, K.T. Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 2018, 556, 360–365. [Google Scholar] [CrossRef]
- Ben-Moshe, A.; Maoz, B.M.; Govorov, A.O.; Markovich, G. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 2013, 42, 7028–7041. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, T.; Wang, R.; Zhang, X. Surface-Enhanced Circular Dichroism of Oriented Chiral Molecules by Plasmonic Nanostructures. J. Phys. Chem. C 2017, 121, 666–675. [Google Scholar] [CrossRef]
- Wu, T.; Ren, J.; Wang, R.; Zhang, X. Competition of Chiroptical Effect Caused by Nanostructure and Chiral Molecules. J. Phys. Chem. C 2014, 118, 20529–20537. [Google Scholar] [CrossRef] [Green Version]
- Kimura, N.; Nishizuru, H.; Aritake, Y.; Akitsu, T. Observation of reciprocal induced CD between colloidal gold nanoparticles and chiral Schiff base Zn(II) complexes with parallel dipole moments. J. Chem. Chem. Eng. 2013, 7, 390–394. [Google Scholar]
- Oshima, M.; Matsuno, M.; Tsutsumi, Y.; Nobumitsu, S.; Haraguchi, T.; Akitsu, T. Synthesis of chiral Schiff base metal complex inducing CD and elucidation of structure of adsorption on surface of gold nanoparticles. Int. J. Org. Chem. 2017, 7, 153–170. [Google Scholar] [CrossRef]
- Tsutsumi, Y.; Sunaga, N.; Haraguchi, T.; Akitsu, T. Induced CD from chiral Schiff base metal complexes involving azo-dye groups to gold nanoparticles. J. Indian. Chem. Soc. 2017, 94, 1163–1172. [Google Scholar]
- Akitsu, T.; Itoh, T. Polarized spectroscopy of hybrid materials of chiral Schiff base cobalt(II), nickel(II), copper(II), and zinc(II) complexes and photochromic azobenzenes in PMMA films. Polyhedron 2010, 29, 477–487. [Google Scholar] [CrossRef]
- Aritake, Y.; Akitsu, T. The role of chiral dopants in organic/inorganic hybrid materials containing chiral Schiff base Ni(II), Cu(II), and Zn(II) complexes. Polyhedron 2012, 31, 278–284. [Google Scholar] [CrossRef]
- Akitsu, T.; Ishioka, C. Manipulation and Observation by Polarized Light: Hybrid Materials of Chiral Schiff Base Mn(III) Complexes and Azobenzene in PMMA. Asian Chem. Lett. 2010, 14, 37–51. [Google Scholar]
- Akitsu, T.; Tanaka, R. Polarized Electronic and IR Spectra of Hybrid Materials of Chiral Mn(II) Complexes and Different Types of Photochromic Dyes Showing Photoisomerization or Weigert Effect. Current Phys. Chem. 2011, 1, 82–89. [Google Scholar] [CrossRef]
- Akitsu, T.; Tanaka, R.; Yamazaki, A. Separate observation with polarized electronic and IR spectra of hybrid materials of chiral Mn(II) complexes and azobenzene. J. Mater. Sci. Eng. A 2011, 1, 518–525. [Google Scholar]
- Yamazaki, A.; Hiratsuka, T.; Akitsu, T. Computational details of calculated UV-VIS and CD spectra of a salen type of chiral Schiff base Ni(II) complex. Asian Chem. Lett. 2012, 16, 1–8. [Google Scholar]
- Yamazaki, A.; Akitsu, T. Polarized spectroscopy and polarized UV light-induced molecular orientation of chiral diphenyl Schiff base Ni(II) and Cu(II) complexes and azobenzene in a PMMA film. RSC Adv. 2012, 2, 2975–2980. [Google Scholar] [CrossRef]
- Ito, M.; Akitsu, T.; Palafox, M.A. Theoretical interpretation of polarized light-induced supramolecular orientation on the basis of normal mode analysis of azobenzene as hybrid materials in PMMA with chiral Schiff base Ni(II), Cu(II), and Zn(II) complexes. J. Appl. Solution Chem. Model. 2016, 5, 30–47. [Google Scholar]
- Sunaga, N.; Akitsu, T.; Konomi, T.; Katoh, M. The theoretical interpretation of the Linear/circularly polarized light-induced molecular orientation of the azo group-containing trans-Achiral Schiff base dinuclear complex composite material. MATEC Web of Conferences 2017, 130, 07004. [Google Scholar] [CrossRef]
- Sunaga, N.; Furuya, S.; Ito, M.; Kominato, C.; Akitsu, T. Interpretaion of chiral ordering of hybrid system of several azo dyes and chiral Schiff base Co(II) complex induced by circularly polarized light. In Computational Chemistry: Theories, Methods and Applications; Daria, B., Ed.; VCH: New York, NY, USA, 2014; pp. 85–104. [Google Scholar]
- Sunaga, N.; Kominato, C.; Ishida, N.; Ito, M.; Akitsu, T.; Konomi, T.; Katoh, M. Wavelength dependence of polarized UV light induced supramolecular orientation of azobenzene-containing organic/inorganic hybrid materials of chiral Schiff base Ni(II), Cu(II), and Zn(II) complexes. In Azobenzene: Aspects, Applications and Research; Linda, E.W., Ed.; VCH: New York, NY, USA, 2017; pp. 117–136. [Google Scholar]
- Takano, H.; Takase, M.; Sunaga, N.; Ito, M.; Akitsu, T. Viscosity and intermolecular interaction of organic/inorganic hybrid systems composed of chiral Schiff base Ni(II), Cu(II), Zn(II) complexes having long ligands, azobenzene and PMMA. Inorganics 2016, 4, 20. [Google Scholar] [CrossRef]
- Akitsu, T.; Uchida, N. Induced d-d bands in CD spectra of solution of chiral Schiff base nickel(II) complex and ferrocene. Asian Chem. Lett. 2010, 14, 21–28. [Google Scholar]
- Akitsu, T.; Yamaguchi, J.; Aritake, Y.; Hiratsuka, T.; Uchida, N. Observation of enhanced CD bands of metal complexes, metallodendrimers, and metal clusters by chiral Schiff base metal complexes. Int J. Current Chem. 2010, 1, 1–6. [Google Scholar]
- Yamaguchi, J.; Akitsu, T. Molecular recognition of chiral Schiff base metal complexes for induced CD bands to metallodendrimers. Int. J. Current Chem. 2011, 2, 165–172. [Google Scholar]
- Natansohn, A.; Rochon, P. Photoinduced Motions in Azo-Containing Polymers. Chem. Rev. 2002, 102, 4139–4175. [Google Scholar] [CrossRef] [PubMed]
- Bobrovsky, A.; Shibaev, V.; Cigl, M.; Hamplova, V.; Pociecha, D.; Bubnov, A. Azobenzene-Containing LC Polymethacrylates Highly Photosensitive in Broad Spectral Range. J. Polymer Sci. A: Polymer Chem. 2016, 54, 2962–2970. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian. Available online: http://gaussian.com/ (accessed on 28 August 2019).
- Mitsumoto, Y.; Sunaga, N.; Akitsu, T. Polarized light induced molecular orientation in laccase for chiral azosalen Mn(II), Co(II), Ni(II), Cu(II), Zn(II) mediators toward application for biofuel cell. SciFed J. Chem. Res. 2017, 1, 1. [Google Scholar]
- Kajiwara, K.; Yamane, S.; Haraguchi1, T.; Pradhan, S.; Sinha, C.; Parida, R.; Giri, S.; Roymahaptra, G.; Moon, D.; Akitsu, T. Computational Design of Azo-anthraquinone Schiff Base Mn Complexes as Mediators for Biofuel Cell Cathode. J. Chem. Chem. Eng. 2019, 13, 23–33. [Google Scholar] [CrossRef]
- Aritake, Y.; Nakayama, T.; Nishizuru, H.; Akitsu, T. Observation of induced CD on CdSe nano-particles from chiral Schiff base Ni(II), Cu(II), Zn(II) complexes. Inorg. Chem. Commun. 2011, 14, 423–425. [Google Scholar] [CrossRef]
- Kaung, Z.-Y.; Fan, Y.-J.; Tao, L.; Li, M.-L.; Zhao, N.; Wang, P.; Chen, E.-Q.; Fan, F.; Xie, H.-L. Alignment Control of Nematic Liquied Crystal using Gold Nanoparticles Grafted by the Liquid Crystalline Polymer with Azobenzene Mesogens as the Side Chains. ACS Appl. Mater. Interface 2018, 10, 27269–27277. [Google Scholar] [CrossRef] [PubMed]
- Lysyakova, L.; Lomadze, N.; Neher, D.; Maximova, K.; Kahashin, A.V.; Santer, S. Light-Tunable Plasmonic Nanoarchitectures Using Gold Nanoparticle-Azobenzene-Containing Cationic Surfactant Complexes. J. Phys. Chem. C 2015, 119, 3762–3770. [Google Scholar] [CrossRef]
- Hallet-Tapley, G.; D’Alfonso, C.; Pacioni, N.L.; McTiernan, C.D.; Gonzalez-Dejar, M.; Lanzalunga, O.; Alarcon, E.I.; Scaiano, J.C. Gold nanoparticle catalysis of the cis-trans isomerization of azobenzene. Chem. Commun. 2013, 49, 10073–10075. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Jing, C.; Ma, W.; Xie, T.; Long, Y.-T. Reversible photoisomerization of azobenzene molecules on a single gold nanoparticle surface. Chem. Commun. 2016, 52, 2984–2987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manna, A.; Chen, P.-L.; Akiyama, H.; Wei, T.-X.; Tamada, K.; Knoll, W. Optimized Photoisomerization on Fold Nanoparticles Capped by Unsymmetrical Azobenzene Disulfides. Chem. Mater. 2003, 15, 20–28. [Google Scholar] [CrossRef]
- Iftime, G.; Lagugne, F.; Natansohn, A.; Rochon, P. Control of Chirality of Azobenzene Liquid Crystalline Polymer with Circularly Polarized Light. J. Am. Chem. Soc. 2000, 122, 12646–12650. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, S.; Hu, J.; Fujiki, M.; Zou, G. The Chirality Induction and Modulation of Polymers by Circularly Polarized Light. Symmetry 2019, 11, 474. [Google Scholar] [CrossRef]
- Aritake, Y.; Takanashi, T.; Yamazaki, A.; Akitsu, T. Polarized spectroscopy and hybrid materials of chiral Schiff base Ni(II), Cu(II), Zn(II) complexes with included or separated azo-groups. Polyhedron 2011, 30, 886–894. [Google Scholar] [CrossRef]
- Kominato, C.; Akitsu, T. Photoinduced Molecular Orientation of Catalytic-like Chiral Azo-Schiff Base Ccmplexes in PMMA or Laccase Matrices. Lett. Appl. NanoBioSci. 2015, 2, 264–270. [Google Scholar]
- Kunitake, F.; Kim, J.-Y.; Yagi, S.; Yamazaki, S.; Haraguchi, T.; Akitsu, T. Chiral recognition of azo-Schiff base ligands, their Cu(II) complexes and their docking to laccase as mediators. Symmetry 2019, 11, 666. [Google Scholar] [CrossRef]
- Sano, A.; Yagi, S.; Haraguchi, T.; Akitsu, T. Synthesis of Mn (II) and, Cu (II) complexes including azobenzene and its application to mediators of laccase for biofuel cells. J. Indian Chem. Soc. 2018, 95, 487–494. [Google Scholar]
- Bing, Y.; Selassie, D.; Paradise, R.H.; Isborn, C.; Kramer, N.; Sadilek, M.; Kaminsky, W.; Kahr, B. Circular Dichroism Tensor of a Triarylmethyl Propeller in Sodium Chlorate Crystals. J. Am. Chem. Soc. 2010, 132, 7454–7465. [Google Scholar] [CrossRef] [PubMed]
- Kahr, B.; Gurney, R.W. Dyeing Crystals. Chem. Rev. 2001, 101, 893–952. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, W.; Clabom, K.; Kahr, B. Polarimetric imaging of crystals. Chem. Soc. Rev. 2004, 33, 514–525. [Google Scholar] [CrossRef]
- Telfer, S.G.; McLean, T.M.; Waterland, M.R. Excition coupling in coordination compounds. Dalton Trans. 2011, 40, 3097–3108. [Google Scholar] [CrossRef]
- Morrow, S.M.; Bissette, A.J.; Fletcher, S.P. Transmission of chirality through space and across length scales. Nat. Nanotech. 2017, 12, 410. [Google Scholar] [CrossRef]
- Fujiki, M. Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry. Symmetry 2014, 6, 677–703. [Google Scholar] [CrossRef] [Green Version]
- Akitsu, T.; Miura, Y. Polarized electronic spectra of organic/inorganic hybrid materials of chiral Schiff base Ni(II) or Cu(II) complexes and disperse red 1 or azobenzene in PMMA films. J. Chem. Chem. Eng. 2011, 5, 443–450. [Google Scholar]
- Akitsu, T.; Yamazaki, A.; Kobayashi, K.; Haraguchi, T.; Endo, K. Computational treatments of hybrid dye materials of azobenzene and chiral Schiff base metal complexes. Inorganics 2018, 6, 37. [Google Scholar] [CrossRef]
- Ito, M.; Akitsu, T. Polarized UV light induced molecular arrangement depending on flexibility of chiral Schiff base Ni(II), Cu(II), and Zn(II) complexes by azobenzene in PMMA matrix. Contemporary Eng. Sci. 2014, 7, 869–877. [Google Scholar] [CrossRef]
- Hariu, N.; Ito, M.; Akitsu, T. Linearly, Circularly, or Non-polarized Light Induced Supramolecular Arrangement of Diastereomer Schiff Base Ni(II), Cu(II), and Zn(II) Complexes by Azobenzene in PMMA Matrix. Contemporary Eng. Sci. 2015, 8, 57–70. [Google Scholar] [CrossRef]
- Hicks, M.R.; Kowalski, J.; Rodger, A. LD spectroscopy of natural and syntetic biomaterials. Chem. Soc. Rev. 2010, 39, 3380–3393. [Google Scholar] [CrossRef] [PubMed]
- Jameson, D.M.; Ross, J.A. Fluorescense Polariation/Anisotropy in Diagnostics and Imaging. Chem. Rev. 2010, 110, 2685–2708. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Nomura, K.; Yamamoto, T.; Sasaki, K. Excitation of Multipole Plasmons by Optical Vortex Beams. Sci. Rep. 2015, 5, 8431. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Wnag, R.; Zhang, X. Plasmon-induced strong interaction between chiral molecules and orbital momentum of light. Sci. Rep. 2015, 5, 18003. [Google Scholar] [CrossRef] [PubMed]
- Hachtel, J.A.; Cho, S.-Y.; Davidson II, R.B.; Feldman, M.A.; Chisholm, M.F.; Haglund, R.F.; Idrobo, J.C.; Pantelides, S.T.; Lawrie, B.J. Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators. Light: Science Appl. 2019, 8, 33. [Google Scholar] [CrossRef]
- Ambrosio, A.; Marrucci, L.; Borbone, F.; Roviello, A.; Maddalena, P. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination. Nat. Commun. 2012, 3, 989. [Google Scholar] [CrossRef]
- Bin, J.; Oates, S. A Unfied Material Description for Light Induced Deformation in Azobenzene Polymers. Sci. Rep. 2015, 5, 14654. [Google Scholar] [CrossRef]
- Watabe, M.; Juman, G.; Miyamato, K.; Omatsu, T. Light induced conch-shaped relief in an azo-polymer film. Sci. Rep. 2014, 4, 4281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Wavelength/nm | Oscillator Strength | Dipole Strength | Electric Transition Dipole Moment μ (x,y,z) | Magnetic Transition Dipole Moment m (x,y,z) | ||||
---|---|---|---|---|---|---|---|---|
NiAz | ||||||||
584.12 | 0.0006 | 0.0107 | 0.1036 | 0.0001 | −0.0018 | −0.8206 | 0.0002 | 0.0571 |
563.16 | 0.0009 | 0.0162 | 0.1273 | 0.0002 | 0.0051 | −0.1091 | −0.0035 | 0.0142 |
433.97 | 0.043 | 0.6148 | −0.7839 | 0.0003 | 0.016 | −0.0761 | −0.0245 | −1.5352 |
430.13 | 0 | 0.0002 | −0.0135 | −0.0026 | −0.0017 | 0.8302 | 0.4876 | 0.0093 |
CuAz | ||||||||
589.19 | 0.0008 | 0.0154 | 0.1241 | −0.0001 | −0.0018 | −0.2885 | −0.0046 | 0.1496 |
496.86 | 0.0635 | 1.0390 | −1.0193 | 0.003 | 0 | −0.0057 | −0.0153 | −0.4703 |
470.13 | 0.0002 | 0.0034 | 0.0584 | −0.0013 | −0.0011 | −0.0184 | −0.0068 | 0.0367 |
456.79 | 0.0001 | 0.0012 | 0.0352 | −0.0014 | −0.0009 | 0.0051 | 0.55 | 0.0917 |
453.76 | 0.0207 | 0.3096 | 0.5563 | −0.0005 | −0.0122 | 0.053 | −0.0644 | 0.6525 |
ZnAz | ||||||||
431.06 | 0.0002 | 0.0030 | −0.0544 | 0 | −0.0033 | −1.2446 | 0.0042 | 0.0887 |
431.06 | 0 | 0.0000 | 0.0004 | 0.0058 | 0 | 0.0093 | 0.5579 | −0.0007 |
Wavelength/nm | Optical Rotation Intensity | μ・m | │μ│ | │m│ | │μ││m│ | cosθ |
---|---|---|---|---|---|---|
NiAz | ||||||
430.08 | −0.03283938 | 0.06637402 | 0.07181685 | 0.97539311 | 0.070049661 | −0.468801412 |
354.63 | 0.0293979 | −0.05934276 | 1.060564534 | 2.911695934 | 3.08804144 | 0.009519918 |
CuAz | ||||||
389.85 | 0.00701379 | −0.01416759 | 0.062957367 | 0.281213673 | 0.017704472 | 0.396159224 |
359.29 | 0.03800265 | −0.07681704 | 4.701237033 | 0.653232891 | 3.071002659 | 0.012374672 |
ZnAz | ||||||
431.06 | −0.0016 | 0.00324 | 0.005814 | 0.557977948 | 0.003244 | −0.49445 |
354.56 | 0.15520407 | −0.31356246 | 5.718414271 | 1.067998895 | 6.107260124 | 0.025413044 |
323.4 | 0.51463755 | −1.03966038 | 1.7919 | 0.5802 | 1.03966038 | 0.495005446 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunaga, N.; Haraguchi, T.; Akitsu, T. Orientation of Chiral Schiff Base Metal Complexes Involving Azo-Groups for Induced CD on Gold Nanoparticles by Polarized UV Light Irradiation. Symmetry 2019, 11, 1094. https://doi.org/10.3390/sym11091094
Sunaga N, Haraguchi T, Akitsu T. Orientation of Chiral Schiff Base Metal Complexes Involving Azo-Groups for Induced CD on Gold Nanoparticles by Polarized UV Light Irradiation. Symmetry. 2019; 11(9):1094. https://doi.org/10.3390/sym11091094
Chicago/Turabian StyleSunaga, Nobumitsu, Tomoyuki Haraguchi, and Takashiro Akitsu. 2019. "Orientation of Chiral Schiff Base Metal Complexes Involving Azo-Groups for Induced CD on Gold Nanoparticles by Polarized UV Light Irradiation" Symmetry 11, no. 9: 1094. https://doi.org/10.3390/sym11091094
APA StyleSunaga, N., Haraguchi, T., & Akitsu, T. (2019). Orientation of Chiral Schiff Base Metal Complexes Involving Azo-Groups for Induced CD on Gold Nanoparticles by Polarized UV Light Irradiation. Symmetry, 11(9), 1094. https://doi.org/10.3390/sym11091094