The Immobilization of ChEMBL474807 Molecules Using Different Classes of Nanostructures
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kunikata, T.; Tatefuji, T.; Aga, H.; Iwaki, K.; Ikeda, M.; Kurimoto, M. Indirubin inhibits inflammatory reactions in delayed-type hypersensitivity. Eur. J. Pharmacol. 2000, 410, 93–100. [Google Scholar] [CrossRef]
- Kim, S.-A.; Kwon, S.-M.; Kim, J.-A.; Kang, K.W.; Yoon, J.-H.; Ahn, S.-G. 5′-Nitro-indirubinoxime, an indirubin derivative, suppresses metastatic ability of human head and neck cancer cells through the inhibition of Integrin β1/FAK/Akt signaling. Cancer Lett. 2011, 306, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.P.; Nowicki, M.O.; Liu, F.; Press, R.; Godlewski, J.; Abdel-Rasoul, M.; Kaur, B.; Fernandez, S.A.; Chiocca, E.A.; Lawler, S.E. Indirubins decrease glioma invasion by blocking migratory phenotypes in both the tumor and stromal endothelial cell compartments. Cancer Res. 2011, 71, 5374–5380. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.-K.; Kim, J.-K. Indirubin derivative E804 inhibits angiogenesis. BMC Cancer 2012, 12, 164. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Magnaudeix, A.; Wilson, C.M.; Yardin, C.; Terro, F. The new indirubin derivative inhibitors of glycogen synthase kinase-3, 6-BIDECO and 6-BIMYEO, prevent tau phosphorylation and apoptosis induced by the inhibition of protein phosphatase-2A by okadaic acid in cultured neurons. J. Neurosci. Res. 2011, 89, 1802–1811. [Google Scholar] [CrossRef]
- Czeleń, P. Molecular dynamics study on inhibition mechanism of CDK-2 and GSK-3β by CHEMBL272026 molecule. Struct. Chem. 2016, 27, 1807–1818. [Google Scholar] [CrossRef]
- Czeleń, P. Inhibition mechanism of CDK-2 and GSK-3β by a sulfamoylphenyl derivative of indoline—a molecular dynamics study. J. Mol. Model. 2017, 23, 230. [Google Scholar] [CrossRef]
- Marko, D.; Schätzle, S.; Friedel, A.; Genzlinger, A.; Zankl, H.; Meijer, L.; Eisenbrand, G. Inhibition of cyclin-dependent kinase 1 (CDK1) by indirubin derivatives in human tumour cells. Br. J. Cancer 2001, 84, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Hoessel, R.; Leclerc, S.; Endicott, J.A.; Nobel, M.E.M.; Lawrie, A.; Tunnah, P.; Leost, M.; Damiens, E.; Marie, D.; Marko, D.; et al. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat. Cell Biol. 1999, 1, 60–67. [Google Scholar] [CrossRef]
- Xiao, Z.; Hao, Y.; Liu, B.; Qian, L. Indirubin and Meisoindigo in the Treatment of Chronic Myelogenous Leukemia in China. Leuk. Lymphoma 2002, 43, 1763–1768. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Liu, Y.-W.; Chen, M.-H.; Wu, J.-Y.; Ho, H.-Y.; Wang, Q.-F.; Chuang, J.-J. Indirubin-3′-monoxime promotes autophagic and apoptotic death in JM1 human acute lymphoblastic leukemia cells and K562 human chronic myelogenous leukemia cells. Oncol. Rep. 2013, 29, 2072–2078. [Google Scholar] [CrossRef]
- Czeleń, P.; Szefler, B. Molecular dynamics study of the inhibitory effects of ChEMBL474807 on the enzymes GSK-3β and CDK-2. J. Mol. Model. 2015, 21, 74. [Google Scholar] [CrossRef]
- De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles:applications and hazards. Int. J. Nanomedicine 2008, 3, 133–149. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, L.; Sun, Y. Nanotechnology applied to overcome tumor drug resistance. J. Control. Release 2012, 162, 45–55. [Google Scholar] [CrossRef]
- Morgen, M.; Bloom, C.; Beyerinck, R.; Bello, A.; Song, W.; Wilkinson, K.; Steenwyk, R.; Shamblin, S. Polymeric Nanoparticles for Increased Oral Bioavailability and Rapid Absorption Using Celecoxib as a Model of a Low-Solubility, High-Permeability Drug. Pharm. Res. 2012, 29, 427–440. [Google Scholar] [CrossRef]
- Turov, V.V.; Chehun, V.F.; Barvinchenko, V.N.; Krupskaya, T.V.; Prylutskyy, Y.I.; Scharff, P.; Ritter, U. Low-temperature 1H-NMR spectroscopic study of doxorubicin influence on the hydrated properties of nanosilica modified by DNA. J. Mater. Sci. Mater. Med. 2011, 22, 525–532. [Google Scholar] [CrossRef]
- Schuetze, C.; Ritter, U.; Scharff, P.; Fernekorn, U.; Prylutska, S.; Bychko, A.; Rybalchenko, V.; Prylutskyy, Y. Interaction of N-fluorescein-5-isothiocyanate pyrrolidine-C60 with a bimolecular lipid model membrane. Mater. Sci. Eng. C 2011, 31, 1148–1150. [Google Scholar] [CrossRef]
- Evstigneev, M.P.; Buchelnikov, A.S.; Voronin, D.P.; Rubin, Y.V.; Belous, L.F.; Prylutskyy, Y.I.; Ritter, U. Complexation of C60 Fullerene with Aromatic Drugs. ChemPhysChem 2013, 14, 568–578. [Google Scholar] [CrossRef]
- Qiao, R.; Roberts, A.P.; Mount, A.S.; Klaine, S.J.; Ke, P.C. Translocation of C60 and Its Derivatives Across a Lipid Bilayer. Nano Lett. 2007, 7, 614–619. [Google Scholar] [CrossRef]
- Prylutska, S.; Bilyy, R.; Overchuk, M.; Bychko, A.; Andreichenko, K.; Stoika, R.; Rybalchenko, V.; Prylutskyy, Y.; Tsierkezos, N.G.; Ritter, U. Water-soluble pristine fullerenes C60 increase the specific conductivity and capacity of lipid model membrane and form the channels in cellular plasma membrane. J. Biomed. Nanotechnol. 2012, 8, 522–527. [Google Scholar] [CrossRef]
- Prylutska, S.V.; Grynyuk, I.I.; Grebinyk, S.M.; Matyshevska, O.P.; Prylutskyy, Y.I.; Ritter, U.; Siegmund, C.; Scharff, P. Comparative study of biological action of fullerenes C60 and carbon nanotubes in thymus cells. Materwiss. Werksttech. 2009, 40, 238–241. [Google Scholar] [CrossRef]
- Johnston, H.J.; Hutchison, G.R.; Christensen, F.M.; Aschberger, K.; Stone, V. The Biological Mechanisms and Physicochemical Characteristics Responsible for Driving Fullerene Toxicity. Toxicol. Sci. 2010, 114, 162–182. [Google Scholar] [CrossRef]
- Andrievsky, G.; Klochkov, V.; Derevyanchenko, L. Is the C60 Fullerene Molecule Toxic?! Fuller. Nanotub. Carbon Nanostructures 2005, 13, 363–376. [Google Scholar] [CrossRef]
- Satoh, M.; Takayanagi, I. Pharmacological studies on fullerene (C60), a novel carbon allotrope, and its derivatives. J. Pharmacol. Sci. 2006, 100, 513. [Google Scholar] [CrossRef]
- Yin, J.-J.; Lao, F.; Fu, P.P.; Wamer, W.G.; Zhao, Y.; Wang, P.C.; Qiu, Y.; Sun, B.; Xing, G.; Dong, J.; et al. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 2009, 30, 611–621. [Google Scholar] [CrossRef]
- Partha, R.; Conyers, J.L. Biomedical applications of functionalized fullerene-based nanomaterials. Int. J. Nanomedicine 2009, 4, 261–275. [Google Scholar] [Green Version]
- Echalier, A.; Hole, A.J.; Lolli, G.; Endicott, J.A.; Noble, M.E.M. An inhibitor’s-eye view of the ATP-binding site of CDKs in different regulatory states. ACS Chem. Biol. 2014, 9, 1251–1256. [Google Scholar] [CrossRef]
- Simon, J.; Flahaut, E.; Golzio, M. Overview of Carbon Nanotubes for Biomedical Applications. Materials 2019, 12, 624. [Google Scholar] [CrossRef]
- Lucente-Schultz, R.M.; Moore, V.C.; Leonard, A.D.; Price, B.K.; Kosynkin, D.V.; Lu, M.; Partha, R.; Conyers, J.L.; Tour, J.M. Antioxidant Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2009, 131, 3934–3941. [Google Scholar] [CrossRef]
- Czeleń, P.; Szefler, B. The Immobilization of Oxindole Derivatives with Use of Cube Rhombellane Homeomorphs. Symmetry 2019, 11, 900. [Google Scholar] [CrossRef]
- Szefler, B.; Czeleń, P. Docking of Cisplatin on Fullerene Derivatives and Some Cube Rhombellane Functionalized Homeomorphs. Symmetry 2019, 11, 874. [Google Scholar] [CrossRef]
- Szefler, B.; Czeleń, P.; Diudea, M.V. Docking of indolizine derivatives on cube rhombellane functionalized homeomorphs. Stud. Univ. Babes-Bolyai Chem. 2018, 63, 7–18. [Google Scholar] [CrossRef]
- Diudea, M.V.; Lungu, C.N.; Nagy, C.L.; Diudea, M.V.; Lungu, C.N.; Nagy, C.L. Cube-Rhombellane Related Structures: A Drug Perspective. Molecules 2018, 23, 2533. [Google Scholar] [CrossRef]
- CHEMBL database release 24.1. 2018. Available online: https://www.ebi.ac.uk/chembl/ (accessed on 2 February 2014).
- Kim, K.-H.; Ko, D.K.; Kim, Y.-T.; Kim, N.H.; Paul, J.; Zhang, S.-Q.; Murray, C.B.; Acharya, R.; Kim, Y.H.; DeGrado, W.F.; et al. Protein-directed self-assembly of a fullerene crystal. Nat. Commun. 2016, 7, 11429. [Google Scholar] [CrossRef]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 5 May 2019).
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Bartashevich, E.V.; Potemkin, V.A.; Grishina, M.A.; Belik, A.V. A Method for Multiconformational Modeling of the Three-Dimensional Shape of a Molecule. J. Struct. Chem. 2002, 43, 1033–1039. [Google Scholar] [CrossRef]
Nanostructure Name | C Atoms | N chiral Index | M Chiral Index | L [nm] | Type | D [Å] | Diameter Class |
---|---|---|---|---|---|---|---|
CNT_260 | 260 | 5 | 5 | 3 | armchair | 6.25 | D1 |
CNT_252 | 252 | 6 | 3 | 3 | chiral | 6.21 | D1 |
CNT_256 | 256 | 8 | 0 | 3 | zigzag | 6.73 | D1 |
CNT_416 | 416 | 8 | 8 | 3 | armchair | 10.83 | D2 |
CNT_392 | 392 | 10 | 6 | 2 | chiral | 10.94 | D2 |
CNT_448 | 448 | 14 | 0 | 3 | zigzag | 10.94 | D2 |
CNT_676 | 676 | 13 | 13 | 3 | armchair | 17.47 | D3 |
CNT_760 | 760 | 15 | 10 | 3 | chiral | 17.01 | D3 |
CNT_704 | 704 | 22 | 0 | 3 | zigzag | 17.20 | D3 |
Nanostructure Name | ΔG [kcal/mol] | Binding Constant [Kmax] | Difference of Kmax Relative to C60 [%] | |||
---|---|---|---|---|---|---|
MAX | MIN | AVERAGE | SD | |||
FF_1 | −6.50 | −6.00 | −6.24 | 0.13 | 58,151.8 | 1388.7 |
FF_2 | −6.10 | −5.80 | −5.96 | 0.09 | 29,604.6 | 657.9 |
FF_3 | −6.50 | −6.10 | −6.31 | 0.11 | 58,151.8 | 1388.7 |
FF_4 | −6.00 | −5.90 | −5.95 | 0.05 | 25,006.8 | 540.2 |
FF_5 | −7.10 | −6.50 | −6.74 | 0.16 | 160,091.8 | 3998.5 |
FF_6 | −6.10 | −5.70 | −5.85 | 0.13 | 29,604.6 | 657.9 |
FF_7 | −6.80 | −6.40 | −6.57 | 0.10 | 96,486.4 | 2370.1 |
FF_8 | −6.70 | −6.30 | −6.50 | 0.12 | 81,501.4 | 1986.5 |
FF_9 | −6.60 | −6.40 | −6.48 | 0.07 | 68,843.7 | 1662.4 |
FF_10 | −6.10 | −5.70 | −5.82 | 0.11 | 29,604.6 | 657.9 |
FF_11 | −7.20 | −6.70 | −6.92 | 0.15 | 189,526.5 | 4752.0 |
FF_12 | −8.00 | −7.40 | −7.66 | 0.18 | 731,270.0 | 18,621.0 |
FF_13 | −5.90 | −5.80 | −5.83 | 0.05 | 21,123.1 | 440.8 |
C60 | −4.90 | −4.90 | −4.90 | 0.00 | 3906.1 | 0.0 |
Nanostructure Name | ΔG [kcal/mol] | Binding Constant [Kmax] | Type | |||
---|---|---|---|---|---|---|
MAX | MIN | AVERAGE | SD | |||
CNT surface | ||||||
CNT_260 | −10.8 | −10.6 | −10.7 | 0.06 | 8.25 × 107 | armchair |
CNT_252 | −10.5 | −10.3 | −10.4 | 0.06 | 4.97 × 107. | chiral |
CNT_256 | −10.4 | −10.3 | −10.4 | 0.05 | 4.20 × 107. | zigzag |
CNT_416 | −11.6 | −11.4 | −11.5 | 0.06 | 3.18 × 108. | armchair |
CNT_392 | −11.7 | −11.5 | −11.6 | 0.07 | 3.77 × 108 | chiral |
CNT_448 | −11.6 | −11.5 | −11.6 | 0.05 | 3.18 × 108 | zigzag |
CNT_676 | −12.6 | −12.4 | −12.5 | 0.05 | 1.72 × 109 | armchair |
CNT_760 | −12.6 | −12.4 | −12.5 | 0.05 | 1.72 × 109 | chiral |
CNT_704 | −12.5 | −12.4 | −12.4 | 0.05 | 1.45 × 109 | zigzag |
CNT interior | ||||||
CNT_260 | 134.9 | 142 | 138 | 2.6 | 1.31 × 10−99 | armchair |
CNT_252 | 249.9 | 269 | 257 | 10.9 | 6.62 × 10−184 | chiral |
CNT_256 | 232 | 271 | 257 | 21.7 | 8.74 × 10−171 | zigzag |
CNT_416 | −19 | −18.9 | −18.9 | 0.02 | 8.46 × 1013 | armchair |
CNT_392 | −19.4 | −19.2 | −19.3 | 0.09 | 1.66 × 1014 | chiral |
CNT_448 | −19.1 | −19 | −19 | 0.05 | 1.00 × 1014 | zigzag |
CNT_676 | −18.3 | −18.2 | −18.2 | 0.04 | 2.59 × 1013 | armchair |
CNT_760 | −18.5 | −18.3 | −18.4 | 0.06 | 3.64 × 1013 | chiral |
CNT_704 | −18.4 | −18.3 | −18.4 | 0.04 | 3.07 × 1013 | zigzag |
Nanostructure Name | ΔG [kcal/mol] | Binding Constant [Kmax] | Difference of Kmax Relative to C60 [%] | |||
---|---|---|---|---|---|---|
MAX | MIN | AVERAGE | SD | |||
144_ex_ex | −3.40 | −3.30 | −3.32 | 0.04 | 310.6 | −92.0 |
144_in_ex | −3.80 | −3.80 | −3.80 | 0.00 | 610.2 | −84.4 |
156_ex_ex | −3.60 | −3.60 | −3.60 | 0.00 | 435.3 | −88.9 |
156_in_ex | −3.80 | −3.80 | −3.80 | 0.00 | 610.2 | −84.4 |
308a4 | −6.60 | −6.40 | −6.50 | 0.09 | 68,843.7 | 1662.4 |
308b4 | −6.50 | −6.40 | −6.41 | 0.03 | 58,151.8 | 1388.7 |
360a | −6.70 | −6.30 | −6.49 | 0.15 | 81,501.4 | 1986.5 |
360b | −6.00 | −5.90 | −5.98 | 0.04 | 25,006.8 | 540.2 |
372AB | −6.10 | −6.00 | −6.09 | 0.03 | 29,604.6 | 657.9 |
396 | −6.10 | −5.90 | −6.01 | 0.06 | 29,604.6 | 657.9 |
420 | −5.80 | −5.60 | −5.70 | 0.05 | 17,842.5 | 356.8 |
444 | −5.60 | −5.50 | −5.54 | 0.05 | 12,730.8 | 225.9 |
456 | −5.60 | −5.40 | −5.50 | 0.07 | 12,730.8 | 225.9 |
ADA_132 | −5.80 | −5.70 | −5.72 | 0.04 | 17,842.5 | 356.8 |
C60 | −4.90 | −4.90 | −4.90 | 0.00 | 3906.1 | 0.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czeleń, P.; Szefler, B. The Immobilization of ChEMBL474807 Molecules Using Different Classes of Nanostructures. Symmetry 2019, 11, 980. https://doi.org/10.3390/sym11080980
Czeleń P, Szefler B. The Immobilization of ChEMBL474807 Molecules Using Different Classes of Nanostructures. Symmetry. 2019; 11(8):980. https://doi.org/10.3390/sym11080980
Chicago/Turabian StyleCzeleń, Przemysław, and Beata Szefler. 2019. "The Immobilization of ChEMBL474807 Molecules Using Different Classes of Nanostructures" Symmetry 11, no. 8: 980. https://doi.org/10.3390/sym11080980