# Weak Embeddable Hypernear-Rings

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

**Definition**

**1.**

- 1.
- $(R,+)$ is a quasicanonical hypergroup (named also polygroup [6]), meaning that:
- (a)
- $x+(y+z)=(x+y)+z$ for any $x,y,z\in R$,
- (b)
- there exists $0\in R$ such that, for any $x\in R,x+0=0+x=\{x\}$,
- (c)
- for any $x\in R$ there exists a unique element $-x\in R,$ such that $0\in x+(-x)\cap (-x)+x$,
- (d)
- for any $x,y,z\in R,z\in x+y$ implies that $x\in z+(-y),y\in (-x)+z$.

- 2.
- $(R,\xb7)$ is a semigroup endowed with a two-sided absorbing element 0, i.e., for any $x\in R,x\xb70=0\xb7x=0.$
- 3.
- The operation “·” is distributive with respect to the hyperoperation “+” from the left-hand side: for any $x,y,z\in R$, there is $x\xb7(y+z)=x\xb7y+x\xb7z.$

**Definition**

**2.**

**Definition**

**3.**

- 1.
- $\rho (x+y)\subseteq \rho (x)+\rho (y)$
- 2.
- $\rho (x\xb7y)\subseteq \rho (x)\xb7\rho (y)$ for all $x,y\in {R}_{1}$.

**Theorem**

**1.**

**Theorem**

**2.**

**Theorem**

**3.**

## 3. Weak Embeddable Hypernear-Rings

**Theorem**

**4.**

**Proof.**

**Definition**

**4.**

**Remark**

**1.**

**Definition**

**5.**

**Theorem**

**5.**

**Proof.**

**Remark**

**2.**

**Example**

**1.**

**Example**

**2.**

**Example**

**3.**

**Theorem**

**6.**

**Proof.**

**Theorem**

**7.**

**Proof.**

**Theorem**

**8.**

- 1.
- $0+0=\{0\}$ and
- 2.
- $0\xb7r=0$, for all $r\in R$.

**Proof.**

**Example**

**4.**

**Remark**

**3.**

**Remark**

**4.**

**Proposition**

**1.**

**Proof.**

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Berman, G.; Silverman, R.J. Near-rings. Am. Math. Mon.
**1959**, 66, 23–34. [Google Scholar] [CrossRef] - Malone, J.J.; Heatherly, H.E., Jr. Some Near-Ring Embeddings. Quart. J. Math. Oxf. Ser.
**1969**, 20, 81–85. [Google Scholar] [CrossRef] - Dašić, V. Hypernear-rings. In Algebraic Hyperstructures and Applications (Xanthi, 1990); World Scientific Publishing: Teaneck, NJ, USA, 1991; pp. 75–85. [Google Scholar]
- Bonansinga, P. Sugli ipergruppi quasicanonici. Atti Soc. Peloritana Sci. Fis. Mat. Natur
**1981**, 27, 9–17. [Google Scholar] - Massouros, C.G. Quasicanonical hypergroups. In Algebraic Hyperstructures and Applications (Xanthi, 1990); World Scientific Publishing: Teaneck, NJ, USA, 1991; pp. 129–136. [Google Scholar]
- Comer, S.D. Polygroups derived from cogroups. J. Algebra
**1984**, 89, 387–405. [Google Scholar] [CrossRef] - Davvaz, B. Polygroup Theory and Related Systems; World Scientific Publishing, Co. Pte. Ltd.: Hackensack, NJ, USA, 2013. [Google Scholar]
- Jančić-Rašović, S.; Cristea, I. A note on near-rings and hypernear-rings with a defect of distributivity. AIP Conf. Proc.
**1978**, 1978, 34007. [Google Scholar] - Ameri, R.; Amiri-Bideshki, M.; Hoskova-Mayerova, S.; Saeid, A.B. Distributive and Dual Distributive Elements in Hyperlattices. Ann. Univ. Ovidius Constanta Ser. Mat.
**2017**, 25, 25–36. [Google Scholar] [CrossRef] [Green Version] - Jančić-Rašović, S.; Cristea, I. Division hypernear-rings. Ann. Univ. Ovidius Constanta Ser. Mat.
**2018**, 26, 109–126. [Google Scholar] [CrossRef] [Green Version] - Gontineac, M. On Hypernear-ring and H-hypergroups. In Algebraic Hyperstructures and Applications (Lasi, 1993); Hadronic Press: Palm Harbor, FL, USA, 1994; pp. 171–179. [Google Scholar]
- Dašić, V. A defect of distributivity of the near-rings. Math. Balk.
**1978**, 8, 63–75. [Google Scholar] - Clay, J. Nearrings: Geneses and Application; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Meldrum, J. Near-Rings and Their Links with Groups; Pitman: London, UK, 1985. [Google Scholar]
- Pilz, G. Near-Rings: The theory and Its Applications; North-Holland Publication Co.: New York, NY, USA, 1983. [Google Scholar]
- Jančić-Rašović, S.; Cristea, I. Hypernear-rings with a defect of distributivity. Filomat
**2018**, 32, 1133–1149. [Google Scholar] [CrossRef] - Vougiouklis, T. Hyperstructures and Their Representations; Hadronic Press: Palm Harbor, FL, USA, 1994. [Google Scholar]
- Jančić-Rašović, S. On a class of P
_{1}− P_{2}hyperrings and hypernear-rings. Set-Val. Math. Appl.**2008**, 1, 25–37. [Google Scholar] - Jančić-Rašović, S.; Dasic, V. Some new classes of (m, n)-hyperrings. Filomat
**2012**, 26, 585–596. [Google Scholar] [CrossRef] - Ameri, R.; Kordi, A.; Hoškova-Mayerova, S. Multiplicative hyperring of fractions and coprime hyperideals. Ann. Univ. Ovidius Constanta Ser. Mat.
**2017**, 25, 5–23. [Google Scholar] [CrossRef] [Green Version]

· | 0 | 1 | 2 | 3 |
---|---|---|---|---|

0 | 0 | 0 | 0 | 0 |

1 | 0 | 1 | 2 | 3 |

2 | 0 | 1 | 2 | 3 |

3 | 0 | 1 | 2 | 3 |

${+}_{\le}$ | 0 | 1 | 2 | 3 |
---|---|---|---|---|

0 | R | R | R | R |

1 | R | {1,2,3} | {1,2,3} | {1,2,3} |

2 | R | {1,2,3} | {2,3} | {2,3} |

3 | R | {1,2,3} | {2,3} | {3} |

+ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|

0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

1 | 1 | 2 | 3 | 4 | 5 | {0, 6} | 1 |

2 | 2 | 3 | 4 | 5 | {0, 6} | 1 | 2 |

3 | 3 | 4 | 5 | {0, 6} | 1 | 2 | 3 |

4 | 4 | 5 | {0, 6} | 1 | 2 | 3 | 4 |

5 | 5 | {0, 6} | 1 | 2 | 3 | 4 | 5 |

6 | 6 | 1 | 2 | 3 | 4 | 5 | 0 |

· | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|---|

0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

1 | 0 | 5 | 4 | 3 | 2 | 1 | 0 |

2 | 0 | 1 | 2 | 3 | 4 | 5 | 0 |

3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

4 | 0 | 5 | 4 | 3 | 2 | 1 | 0 |

5 | 0 | 1 | 2 | 3 | 4 | 5 | 0 |

6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dakić, J.; Jančić-Rašović, S.; Cristea, I.
Weak Embeddable Hypernear-Rings. *Symmetry* **2019**, *11*, 964.
https://doi.org/10.3390/sym11080964

**AMA Style**

Dakić J, Jančić-Rašović S, Cristea I.
Weak Embeddable Hypernear-Rings. *Symmetry*. 2019; 11(8):964.
https://doi.org/10.3390/sym11080964

**Chicago/Turabian Style**

Dakić, Jelena, Sanja Jančić-Rašović, and Irina Cristea.
2019. "Weak Embeddable Hypernear-Rings" *Symmetry* 11, no. 8: 964.
https://doi.org/10.3390/sym11080964