Degenerate Stirling Polynomials of the Second Kind and Some Applications
Abstract
:1. Introduction
2. The Degenerate -Stirling Polynomials of the Second Kind
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Araci, S.; Acikgoz, M. A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2012, 22, 399–406. [Google Scholar]
- Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 1979, 15, 51–88. [Google Scholar]
- Dolgy, D.V.; Kim, T. Some explicit formulas of degenerate Stirling numbers associated with the degenerate special numbers and polynomials. Proc. Jangjeon Math. Soc. 2018, 21, 309–317. [Google Scholar]
- Feller, W. An Introduction to Probability Theory and Its Application; John Wiley: Hoboken, NJ, USA, 1970. [Google Scholar]
- He, Y.; Pan, J. Some recursion formulae for the number of derangements and Bell numbers. J. Math. Res. Appl. 2016, 36, 15–22. [Google Scholar]
- Howard, F.T. Bell polynomials and degenerate Stirling numbers. Rend. Sem. Mat. Univ. Padova. 1979, 61, 203–219. [Google Scholar]
- Jeong, J.; Rim, S.-H.; Kim, B.M. On finite-times degenerate Cauchy numbers and polynomials. Adv. Differ. Equ. 2015, 2015, 321. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Kim, T.; Jang, G.-W. A note on degenerate Stirling numbers of the first kind. Proc. Jangjeon Math. Soc. 2018, 21, 393–404. [Google Scholar]
- Kim, D.S.; Dolgy, D.V.; Kim, D.; Kim, T. Some identities on r-central factorial numbers and r-central Bell polynomials. Adv. Differ. Equ. 2019, 2019, 245. [Google Scholar] [CrossRef]
- Kim, T. A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 2017, 20, 319–331. [Google Scholar]
- Kim, T.; Kim, D.S.; Jang, G.-W. Extended Stirling polynomials of the second kind and extended Bell polynomials. Proc. Jangjeon Math. Soc. 2017, 20, 365–376. [Google Scholar]
- Kim, T.; Jang, G.-W. A note on degenerate gamma function and degenerate Stirling number of the second kind. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 207–214. [Google Scholar]
- Kim, T.; Yao, Y.; Kim, D.S.; Kwon, H.-I. Some identities involving special numbers and moments of random variables. Rocky Mt. J. Math. 2019, 49, 521–538. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S. Extended Stirling numbers of the first kind associated with Daehee numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 2018, 28, 127–138. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Kwon, H.-I. A note on degenerate Stirling numbers and their applications. Proc. Jangjeon Math. Soc. 2018, 21, 195–203. [Google Scholar]
- Kim, T.; Kim, D.S. On λ-Bell polynomials associated with umbral calculus. Russ. J. Math. Phys. 2017, 24, 69–78. [Google Scholar] [CrossRef]
- Koutras, M. Non-central stirling numbers and some applications. Discret. Math. 1982, 42, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Ross, S.M. Introduction to Probability Models; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Brualdi, R.A. Introductory Combinatorics; China Machine Press: Beijing, China, 2009. [Google Scholar]
- Kotz, S.; Kozubowski, T.J.; Podgorski, K. The Laplace Distribution and Generalizations; Birkhäuser Boston, Inc.: Boston, MA, USA, 2001. [Google Scholar]
- Kim, D.S.; Kim, H.Y.; Kim, D.; Kim, T. Identities of symmetry for type 2 Bernoulli and Euler polynomials. Symmetry 2019, 11, 613. [Google Scholar] [CrossRef]
- Dolgy, D.V.; Kim, D.S.; Kwon, J.; Kim, T. Some identities of ordinary and degenerate Bernoulli numbers and polynomials. Symmetry 2019, 11, 847. [Google Scholar] [CrossRef]
- Kim, D.S.; Dolgy, D.V.; Kwon, J.; Kim, T. Note on type 2 degenerate q-Bernoulli polynomials. Symmetry 2019, 11, 914. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Degenerate Bernstein polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 2913–2920. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. A note on type 2 Changhee and Daehee polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 2783–2791. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Degenerate central Bell numbers and polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 2507–2513. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind. Sci. China Math. 2019, 62, 999–1028. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S. Degenerate Laplace transform and degenerate gamma function. Russ. J. Math. Phys. 2017, 24, 241–248. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, D.S.; Kim, H.Y.; Kwon, J. Degenerate Stirling Polynomials of the Second Kind and Some Applications. Symmetry 2019, 11, 1046. https://doi.org/10.3390/sym11081046
Kim T, Kim DS, Kim HY, Kwon J. Degenerate Stirling Polynomials of the Second Kind and Some Applications. Symmetry. 2019; 11(8):1046. https://doi.org/10.3390/sym11081046
Chicago/Turabian StyleKim, Taekyun, Dae San Kim, Han Young Kim, and Jongkyum Kwon. 2019. "Degenerate Stirling Polynomials of the Second Kind and Some Applications" Symmetry 11, no. 8: 1046. https://doi.org/10.3390/sym11081046