# Overview of High Energy String Scattering Amplitudes and Symmetries of String Theory

^{*}

## Abstract

**:**

## 1. Introduction

- there are infinite higher spin J particles
- the coefficients ${a}_{J}$’s are precisely related to each other.

## 2. Zero Norm States and Enlarged Stringy Symmetries

## 3. Stringy Symmetries of Hard String Scattering Amplitudes

## 4. Hard Closed String Scatterings, KLT and Hard String BCJ Relations

## 5. Stringy Symmetries of Regge String Scattering Amplitudes

## 6. The Lauricella String Scattering Amplitudes (LSSA)

## 7. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Yi, Y. Symmetry of String Scattering Amplitudes. J. Phys.
**2017**, 804, 012043. [Google Scholar] - Lee, J.-C.; Yang, Y. Linear relations and their breakdown in high energy massive string scatterings in compact spaces. Nucl. Phys. B
**2007**, 784, 22–35. [Google Scholar] [CrossRef] [Green Version] - Lee, J.-C.; Takimi, T.; Yang, Y. High-energy string scatterings of compactified open string. Nucl. Phys. B
**2008**, 804, 250–261. [Google Scholar] [CrossRef] [Green Version] - Gross, D.J.; Mende, P.F. The high-energy behavior of string scattering amplitudes. Phys. Lett. B
**1987**, 197, 129–134. [Google Scholar] [CrossRef] - Gross, D.J.; Mende, P.F. String theory beyond the Planck scale. Nucl. Phys. B
**1988**, 303, 407–454. [Google Scholar] [CrossRef] - Gross, D.J. High-Energy Symmetries of String Theory. Phys. Rev. Lett.
**1988**, 60, 1229. [Google Scholar] [CrossRef] [PubMed] - Gross, D.J. Strings at superplanckian energies: In search of the string symmetry. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.
**1989**, 329, 401–413. [Google Scholar] [CrossRef] - Gross, D.J.; Mende, P.F. The high energy behavior of open string scattering. Nucl. Phys. B
**1989**, 326, 73–107. [Google Scholar] [CrossRef] - Lee, J.-C. New symmetries of higher spin states in string theory. Phys. Lett. B
**1990**, 241, 336–342. [Google Scholar] [CrossRef] - Lee, J.-C.; Ovrut, B.A. Zero-norm states and enlarged gauge symmetries of the closed bosonic string with massive background fields. Nucl. Phys. B
**1990**, 336, 222–244. [Google Scholar] [CrossRef] - Lee, J.-C. Decoupling of degenerate positive-norm states in string theory. Phys. Rev. Lett.
**1990**, 64, 1636. [Google Scholar] [CrossRef] [PubMed] - Chan, C.-T.; Lee, J.-C. Stringy symmetries and their high-energy limits. Phys. Lett. B
**2005**, 611, 193–198. [Google Scholar] [CrossRef] [Green Version] - Lee, J.-C. Stringy symmetries and their high-energy limit. arXiv
**2003**, arXiv:hep-th/0303012. [Google Scholar] - Chan, C.-T.; Lee, J.-C. Zero-norm states and high-energy symmetries of string theory. Nucl. Phys. B
**2004**, 690, 3–20. [Google Scholar] [CrossRef] [Green Version] - Chan, C.-T.; Ho, P.-M.; Lee, J.-C. Ward identities and high energy scattering amplitudes in string theory. Nucl. Phys. B
**2005**, 708, 99–114. [Google Scholar] [CrossRef] [Green Version] - Chan, C.-T.; Ho, P.-M.; Lee, J.-C.; Teraguchi, S.; Yang, Y. Solving all 4-point correlation functions for bosonic open string theory in the high-energy limit. Nucl. Phys. B
**2005**, 725, 352–382. [Google Scholar] [CrossRef] [Green Version] - Chan, C.-T.; Ho, P.-M.; Lee, J.-C.; Teraguchi, S.; Yang, Y. High-energy zero-norm states and symmetries of string theory. Phys. Rev. Lett.
**2006**, 96, 171601. [Google Scholar] [CrossRef] - Kawai, H.; Lewellen, D.C.; Tye, S.-H.H. A relation between tree amplitudes of closed and open strings. Nucl. Phys. B
**1986**, 269, 1–23. [Google Scholar] [CrossRef] - Chan, C.-T.; Lee, J.-C.; Yang, Y. Notes on high-energy limit of bosonic closed string scattering amplitudes. Nucl. Phys. B
**2006**, 749, 280–290. [Google Scholar] [CrossRef] [Green Version] - Bern, Z.; Carrasco, J.J.M.; Johansson, H. New relations for gauge-theory amplitudes. Phys. Rev. D
**2008**, 78, 085011. [Google Scholar] [CrossRef] [Green Version] - Ko, S.-L.; Lee, J.-C.; Yang, Y. Patterns of high energy massive string scatterings in the Regge regime. JHEP
**2009**, 2009, 028. [Google Scholar] [CrossRef] - He, S.; Lee, J.-C.; Takahashi, K.; Yangi, Y. Massive superstring scatterings in the Regge regime. Phys. Rev. D
**2011**, 83, 066016. [Google Scholar] [CrossRef] - Laim, S.-H.; Lee, J.-C.; Yang, Y. The exact sl (k+ 3, c) symmetry of string scattering amplitudes. arXiv
**2016**, arXiv:1603.00396. [Google Scholar] - Lai, S.H.; Lee, J.-C.; Lee, T.; Yang, Y. Solving lauricella string scattering amplitudes through recurrence relations. JHEP
**2017**, 9, 130. [Google Scholar] [CrossRef] - Lee, J.-C.; Yi, Y. The Appell function F1 and Regge string scattering amplitudes. Phys. Lett. B
**2014**, 739, 370–374. [Google Scholar] [CrossRef] - Lee, J.-C.; Mitsuka, Y. Recurrence relations of Kummer functions and Regge string scattering amplitudes. JHEP
**2013**, 2013, 1–23. [Google Scholar] [CrossRef] [Green Version] - Lai, S.-H.; Lee, J.-C.; Yang, Y. The string bcj relations revisited and extended recurrence relations of nonrelativistic string scattering amplitudes. arXiv
**2016**, arXiv:1601.03813. [Google Scholar] [CrossRef] - Lee, J.-C.; Yang, Y. Review on high energy string scattering amplitudes and symmetries of string theory. arXiv
**2015**, arXiv:1510.03297. [Google Scholar] - Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory, v. 1; Cambridge University: Cambridge, UK, 1987. [Google Scholar]
- Lee, J.-C. Reduction of stringy scattering amplitudes through massive ward identities. Z. Phys. C
**1994**, 63, 351–355. [Google Scholar] [CrossRef] - Kao, H.C.; Lee, J.-C. Decoupling of degenerate positive-norm states in Witten’s string field theory. Phys. Rev. D
**2003**, 67, 086003. [Google Scholar] [CrossRef] - Lee, J.-C. Heterotic massive Einstein-Yang-Mills-type symmetry and Ward identity. Phys. Lett. B
**1994**, 337, 69–73. [Google Scholar] [CrossRef] [Green Version] - Lee, J.-C. Spontaneously broken symmetry in string theory. Phys. Lett. B
**1994**, 326, 79–83. [Google Scholar] [CrossRef] [Green Version] - Lee, J.-C. Generalized on-shell Ward identities in string theory. Prog. Theor. Phys.
**1994**, 91, 353–360. [Google Scholar] [CrossRef] - Chan, C.-T.; Lee, J.-C.; Yang, Y. Anatomy of zero-norm states in string theory. Phys. Rev. D
**2005**, 71, 086005. [Google Scholar] [CrossRef] [Green Version] - Witten, E. Non-commutative geometry and string field theory. Nucl. Phys. B
**1986**, 268, 253–294. [Google Scholar] [CrossRef] - Chung, T.-D.; Lee, J.-C. Discrete gauge states and w + charges in c= 1 2D gravity. Phys. Lett. B
**1995**, 350, 22–27. [Google Scholar] [CrossRef] - Avan, J.; Jevicki, A. Classical integrability and higher symmetries of collective string field theory. Phys. Lett. B
**1991**, 266, 35–41. [Google Scholar] [CrossRef] - Avan, J.; Jevicki, A. Quantum integrability and exact eigenstates of the collective string field theory. Phys. Lett. B
**1991**, 272, 17–24. [Google Scholar] [CrossRef] - Klebanov, I.R.; Polyakov, A.M. Interaction of discrete states in two-dimensional string theory. Mod. Phys. Lett. A
**1991**, 6, 3273–3281. [Google Scholar] [CrossRef] - Witten, E. Ground ring of two-dimensional string theory. Nucl. Phys. B
**1992**, 373, 187–213. [Google Scholar] [CrossRef] [Green Version] - Witten, E.; Zwiebach, B. Algebraic structures and differential geometry in two-dimensional string theory. Nucl. Phys. B
**1992**, 377, 55–112. [Google Scholar] [CrossRef] [Green Version] - Chung, T.-D.; Lee, J.-C. Superfield form of discrete gauge states in ĉ = 1 2d supergravity. Z. Phys. C
**1997**, 75, 555–558. [Google Scholar] [CrossRef] - Lee, J.-C. Soliton gauge states and T-duality of closed bosonic string compatified on torus. Eur. Phys. J. C
**1999**, 7, 669–672. [Google Scholar] [CrossRef] - Lee, J.-C. Chan–Paton soliton gauge states of the compactified open string. Eur. Phys. J. C
**2000**, 13, 695–697. [Google Scholar] [CrossRef] - Chan, C.T.; Lee, J.-C. One-loop massive scattering amplitudes and Ward identities in string theory. Prog. Theor. Phys.
**2006**, 115, 229–243. [Google Scholar] [CrossRef] - Chan, C.T.; Lee, J.-C.; Yang, Y. High energy scattering amplitudes of superstring theory. Nucl. Phys. B
**2006**, 738, 93–123. [Google Scholar] [CrossRef] [Green Version] - Moeller, N.; West, P. Arbitrary four string scattering at high energy and fixed angle. Nucl. Phys. B
**2005**, 729, 1–48. [Google Scholar] [CrossRef] [Green Version] - Veneziano, G. Construction of a crossing-simmetric, Regge-behaved amplitude for linearly rising trajectories. Il Nuovo Cimento A
**1968**, 57, 190–197. [Google Scholar] [CrossRef] [Green Version] - Bjerrum-Bohr, N.E.J.; Damgaard, P.H.; Vanhove, P. Minimal basis for gauge theory amplitudes. Phys. Rev. Lett.
**2009**, 103, 161602. [Google Scholar] [CrossRef] - Chan, C.T.; Lee, J.-C.; Yang, Y. Scatterings of massive string states from D-brane and their linear relations at high energies. Nucl. Phys. B
**2007**, 764, 1–14. [Google Scholar] [CrossRef] [Green Version] - Lee, J.-C.; Mitsuka, Y.; Yang, Y. Higher spin string states scattered from d-particle in the Regge regime and factorized ratios of fixed angle scatterings. Prog. Theor. Phys.
**2011**, 126, 397–417. [Google Scholar] [CrossRef] - Chan, C.T.; Ho, P.-M.; Lee, J.-C.; Teraguchi, S.; Yang, Y. Comments on the high energy limit of bosonic open string theory. Nucl. Phys. B
**2006**, 749, 266–279. [Google Scholar] [CrossRef] [Green Version] - Chan, C.T.; Lee, J.-C.; Yang, Y. Power-law Behavior of Strings Scattered from Domain-wall at High Energies and Breakdown of their Linear Relations. arXiv
**2006**, arXiv:hep-th/0610219. [Google Scholar] - Craps, B.; Roose, F. Anomalous D-brane and orientifold couplings from the boundary state. Phys. Lett. B
**1998**, 445, 150–159. [Google Scholar] [CrossRef] [Green Version] - Stefański, B. Gravitational couplings of D-branes and O-planes. Nucl. Phys. B
**1999**, 548, 275–290. [Google Scholar] [CrossRef] [Green Version] - Morales, J.F.; Scrucca, C.A.; Serone, M. Anomalous couplings for D-branes and O-planes. Nucl. Phys. B
**1999**, 552, 291–315. [Google Scholar] [CrossRef] [Green Version] - Schnitzer, H.J.; Wyllard, N. An orientifold of AdS5× T11 with D7-branes, the associated α
^{′}2-corrections and their role in the dual Script N = 1 Sp (2N + 2M) × Sp (2N) gauge theory. JHEP**2002**, 2002, 012. [Google Scholar] [CrossRef] - Garousi, M.R. Superstring scattering from O-planes. Nucl. Phys. B
**2007**, 765, 166–184. [Google Scholar] [CrossRef] [Green Version] - Lee, J.-C.; Yang, Y. High-energy massive string scatterings from orientifold planes. Nucl. Phys. B
**2008**, 798, 198–209. [Google Scholar] [CrossRef] [Green Version] - Garousi, M.R.; Myers, R.C. Superstring scattering from D-branes. Nucl. Phys. B
**1996**, 475, 193–224. [Google Scholar] [CrossRef] [Green Version] - Mende, P.F. High energy string collisions in a compact space. Phys. Lett. B
**1994**, 326, 216–222. [Google Scholar] [CrossRef] [Green Version] - Amati, D.; Ciafaloni, M.; Veneziano, G. Superstring collisions at Planckian energies. Phys. Lett. B
**1987**, 197, 81–88. [Google Scholar] [CrossRef] - Amati, D.; Ciafaloni, M.; Veneziano, G. Classical and quantum gravity effects from Planckian energy superstring collisions. Int. J. Mod. Phys. A
**1988**, 3, 1615–1661. [Google Scholar] [CrossRef] - Amati, D.; Ciafaloni, M.; Veneziano, G. Can spacetime be probed below the string size? Phys. Lett. B
**1989**, 216, 41–47. [Google Scholar] [CrossRef] [Green Version] - Soldate, M. Partial-wave unitarity and closed-string amplitudes. Phys. Lett. B
**1987**, 186, 321–327. [Google Scholar] [CrossRef] - Muzinich, I.J.; Soldate, M. High-energy unitarity of gravitation and strings. Phys. Rev. D
**1988**, 37, 359. [Google Scholar] [CrossRef] - Brower, R.C.; Polchinski, J.; Strassler, M.J.; Tan, C.-I. The Pomeron and gauge/string duality. JHEP
**2007**, 2007, 005. [Google Scholar] [CrossRef] - Brower, R.C.; Nastase, H.; Chnitzer, H.J.; Tan, C.-I. Analyticity for multi-Regge limits of the Bern–Dixon–Smirnov amplitudes. Nucl. Phys. B
**2009**, 822, 301–347. [Google Scholar] [CrossRef] - Andreev, O.; Siegel, W. Quantized tension: Stringy amplitudes with Regge poles and parton behavior. Phys. Rev. D
**2005**, 71, 086001. [Google Scholar] [CrossRef] [Green Version] - Lee, J.-C.; Yan, C.H.; Yang, Y. High-energy string scattering amplitudes and signless Stirling number identity. SIGMA. arXiv
**2012**, arXiv:1012.5225. [Google Scholar] [CrossRef] - He, S.; Lee, J.-C.; Yang, Y. Exponential fall-off behavior of Regge scatterings in compactified open string theory. Prog. Theor. Phys.
**2012**, 128, 887–901. [Google Scholar] [CrossRef] - Ko, S.L.; Lee, J.-C.; Yang, Y. Kummer function and high energy string scatterings. arXiv
**2008**, arXiv:0811.4502. [Google Scholar] - Lee, J.C.; Yang, Y.; Ko, S.-L. Stirling number identities and High energy String Scatterings. arXiv
**2009**, arXiv:0909.3894. [Google Scholar] - Slater, L.J. Confluent Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
- Fu, C.-H.; Lee, J.-C.; Tan, C.-I.; Yang, Y. Recurrence relations of higher spin BPST vertex operators for open strings. Phys. Rev. D
**2013**, 88, 046004. [Google Scholar] [CrossRef] [Green Version] - Miller, W., Jr. Lie theory and the Lauricella functions FD. J. Math. Phys.
**1972**, 13, 1393–1399. [Google Scholar] [CrossRef] - Wang, X. Recursion formulas for Appell functions. Integr. Transf. Spec. Funct.
**2012**, 23, 421–433. [Google Scholar] [CrossRef] - Sagnotti, A.; Taronna, M. String lessons for higher-spin interactions. Nucl. Phys. B
**2011**, 842, 299–361. [Google Scholar] [CrossRef] [Green Version] - Isberg, J.; Lindström, U.; Sundborg, B.; Theodoridis, G. Classical and quantized tensionless strings. Nucl. Phys. B
**1994**, 411, 122–156. [Google Scholar] [CrossRef] [Green Version] - Sundborg, B. Stringy gravity, interacting tensionless strings and massless higher spins. Nucl. Phys. B
**2001**, 102, 113–119. [Google Scholar] [CrossRef] - Sezgin, E.; Sundell, P. Massless higher spins and holography. Erratum. Nucl. Phys. B
**2003**, 660, 403. [Google Scholar] [CrossRef] - Sezgin, E.; Sundell, P. Massless higher spins and holography. Nucl. Phys. B
**2002**, 644, 303–370. [Google Scholar] [CrossRef] [Green Version] - Chu, C.-S.; Ho, P.-M.; Lin, F.-L. Cubic string field theory in pp-wave background and background independent Moyal structure. JHEP
**2002**, 2002, 003. [Google Scholar] [CrossRef] - Bonelli, G. On the tensionless limit of bosonic strings, infinite symmetries and higher spins. Nucl. Phys. B
**2003**, 669, 159–172. [Google Scholar] [CrossRef] [Green Version] - Bianchi, M.; Morales, J.F.; Samtleben, H. On stringy AdS5× S5 and higher spin holography. J. High Energy Phys.
**2003**, 2003, 062. [Google Scholar] [CrossRef] - Sagnotti, A.; Tsulaia, M. On higher spins and the tensionless limit of string theory. Nucl. Phys. B
**2004**, 682, 83–116. [Google Scholar] [CrossRef] [Green Version] - Chang, C.-M.; Minwalla, S.; Sharma, T.; Yin, X. Abj triality: from higher spin fields to strings. J. Phys. A Math. Theor.
**2013**, 46, 214009. [Google Scholar] [CrossRef] - Atick, J.J.; Witten, E. The Hagedorn transition and the number of degrees of freedom of string theory. Nucl. Phys. B
**1988**, 310, 291–334. [Google Scholar] [CrossRef] - Hagedorn, R. Statistical thermodynamics of strong interactions at high energies. Nuovo Cim. A
**1968**, 56 (Suppl. 3), 1027. [Google Scholar] - Sundborg, B. The Hagedorn transition, deconfinement and N= 4 SYM theory. Nucl. Phys. B
**2000**, 573, 349–363. [Google Scholar] [CrossRef] - Moore, G. Finite in all directions. arXiv
**1993**, arXiv:hep-th/9305139. [Google Scholar] - Moore, G. Symmetries of the bosonic string S-matrix. arXiv
**1993**, arXiv:hep-th/9310026. [Google Scholar] - Chan, C.-T.; Kawamoto, S.; Tomino, D. To see symmetry in a forest of trees. Nucl. Phys. B
**2014**, 885, 225–265. [Google Scholar] [CrossRef] [Green Version] - West, P. Physical states and string symmetries. Mod. Phys. Lett. A
**1995**, 10, 761–771. [Google Scholar] [CrossRef] - Giddings, S.B.; Gross, D.J.; Maharana, A. Gravitational effects in ultrahigh-energy string scattering. Phys. Rev. D
**2008**, 77, 046001. [Google Scholar] [CrossRef] [Green Version]

Diminsion | $\mathit{p}=-1$ | $1\le \mathit{p}\le 23$ | $\mathit{p}=24$ |
---|---|---|---|

Dp-branes | X | C + O | O |

Op-planes | X | C | X |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lee, J.-C.; Yang, Y.
Overview of High Energy String Scattering Amplitudes and Symmetries of String Theory. *Symmetry* **2019**, *11*, 1045.
https://doi.org/10.3390/sym11081045

**AMA Style**

Lee J-C, Yang Y.
Overview of High Energy String Scattering Amplitudes and Symmetries of String Theory. *Symmetry*. 2019; 11(8):1045.
https://doi.org/10.3390/sym11081045

**Chicago/Turabian Style**

Lee, Jen-Chi, and Yi Yang.
2019. "Overview of High Energy String Scattering Amplitudes and Symmetries of String Theory" *Symmetry* 11, no. 8: 1045.
https://doi.org/10.3390/sym11081045