Ball Convergence for Combined Three-Step Methods Under Generalized Conditions in Banach Space
Abstract
:1. Introduction
- (i)
- Applicable only on the real line.
- (ii)
- Range of initial guesses for granted convergence is not discussed.
- (iii)
- Higher than first order derivatives and Taylor series expansions were used limiting the applicability.
- (iv)
- No computable error bounds on (where ) were given.
- (v)
- No uniqueness result was addressed.
- (vi)
- (vii)
2. Convergence Analysis
- (a)
- (b)
- (c)
- Ifand w are constants, then
- (d)
- (e)
- (f)
- Let us show how to consider functionsand m. Define function ϕ by
- (g)
- If, we can obtain the results for the two-step method
3. Examples with Applications
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, S.P.; Qian, Y.H. A family of combined iterative methods for solving nonlinear equations. Am. J. Appl. Math. Stat. 2017, 5, 22–32. [Google Scholar] [CrossRef]
- Argyros, I.K. Convergence and Application of Newton-Type Iterations; Springer: Berlin, Germany, 2008. [Google Scholar]
- Rheinboldt, W.C. An Adaptive Continuation Process for Solving Systems of Nonlinear Equations; Polish Academy of Science, Banach Center Publications: Warsaw, Poland, 1978; Volume 3, pp. 129–142. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall Series in Automatic Computation; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Argyros, I.K.; Hilout, S. Computational Methods in Nonlinear Analysis; World Scientific Publishing Company: New Jersey, NJ, USA, 2013. [Google Scholar]
- Kou, J. A third-order modification of Newton method for systems of nonlinear equations. Appl. Math. Comput. 2007, 191, 117–121. [Google Scholar]
- Petkovic, M.S.; Neta, B.; Petkovic, L.; Džunič, J. Multipoint Methods for Solving Nonlinear Equations; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Sharma, J.R.; Ghua, R.K.; Sharma, R. An efficient fourth-order weighted-Newton method for system of nonlinear equations. Numer. Algor. 2013, 62, 307–323. [Google Scholar] [CrossRef]
- Ezquerro, J.A.; Hernández, M.A. New iterations of R-order four with reduced computational cost. BIT Numer. Math. 2009, 49, 325–342. [Google Scholar] [CrossRef]
- Amat, S.; Hernández, M.A.; Romero, N. A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 2008, 206, 164–174. [Google Scholar] [CrossRef]
- Argyros, I.K.; Magreñán, Á.A. Ball convergence theorems and the convergence planes of an iterative methods for nonlinear equations. SeMA 2015, 71, 39–55. [Google Scholar]
- Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Increasing the order of convergence of iterative schemes for solving nonlinear system. J. Comput. Appl. Math. 2012, 252, 86–94. [Google Scholar] [CrossRef]
- Potra, F.A.; Pták, V. Nondiscrete Introduction and Iterative Process. In Research Notes in Mathematics; Pitman Advanced Publishing Program: Boston, MA, USA, 1984; Volume 103. [Google Scholar]
m | r | Methods | ||||||
---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 2.6303 | 3.13475 | 2.6303 | 2.1546 | 2.1546 | M1 |
1 | 2 | 2 | 2.6303 | 3.35124 | 2.6303 | 2.0157 | 2.0157 | M1 |
r | Methods | n | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 0.382692 | 0.422359 | 0.321733 | 0.218933 | 0.218933 | M1 | 0.15 | 3 | 4.9963 |
1 | 2 | 0.382692 | 0.441487 | 0.321733 | 0.218933 | 0.218933 | M1 | 0.11 | 4 | 4.0000 |
m | r | Methods | ||||||
---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 0.0666667 | 0.0824045 | 0.0233123 | 0.00819825 | 0.00819825 | M1 |
1 | 2 | 2 | 0.0666667 | 0.0888889 | 0.0233123 | 0.00819825 | 0.00819825 | M1 |
m | r | Methods | n | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 2 | 0.0102914 | 0.0102917 | 0.00995072 | 0.00958025 | 0.00958025 | M1 | 1.008 | 3 | 5.0000 |
1 | 2 | 2 | 0.0102914 | 0.010292 | 0.00995072 | 0.00958025 | 0.00958025 | M1 | 1.007 | 4 | 3.0000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbey, R.A.; Argyros, I.K.; Behl, R. Ball Convergence for Combined Three-Step Methods Under Generalized Conditions in Banach Space. Symmetry 2019, 11, 1002. https://doi.org/10.3390/sym11081002
Alharbey RA, Argyros IK, Behl R. Ball Convergence for Combined Three-Step Methods Under Generalized Conditions in Banach Space. Symmetry. 2019; 11(8):1002. https://doi.org/10.3390/sym11081002
Chicago/Turabian StyleAlharbey, R. A., Ioannis K. Argyros, and Ramandeep Behl. 2019. "Ball Convergence for Combined Three-Step Methods Under Generalized Conditions in Banach Space" Symmetry 11, no. 8: 1002. https://doi.org/10.3390/sym11081002