Directional Thermodynamic Formalism
Abstract
:1. Introduction
- A natural directional Lipschitz scaling function of v in direction e can be given by:
- A natural directional pointwise Lipschitz regularity of v at y in direction e can be given by:
- We will obtain general upper bounds for the directional Hölder spectra.
- We will show optimal results for two large classes of examples of deterministic and random anisotropic self-similar tools for possible modeling turbulence (or cascades) and textures in images (see [50]): Sierpinski cascade functions introduced by the first author in [29] and fractional Brownian sheets introduced by both Kamont in [67] and Pesquet-Popesu and Lévy-Véhel in [77], and revisited by Ayache, Léger, and Pontier [78] for extra properties.
2. Directional Scaling Function and Its Connection with Anisotropic Scaling Functions
2.1. Directional Scaling Function
- 1.
- If then .
- 2.
- We have always:
- 3.
- If then .
2.2. Connection Between the Directional Scaling Function and Anisotropic Scaling Functions
3. Criteria of Directional Scaling Function
3.1. Criterion of Directional Scaling Function in Triebel Wavelet Bases
3.2. Criterion of Directional Scaling Function in Hyperbolic Wavelet Bases
3.3. Criterion of Directional Lipschitz Scaling Function of f on Hyperbolic Schauder Bases
- 1.
- 2.
- If , then for all . The result follows from Remark 3.
- 1.
- We have and .
- 2.
- If then .
- 3.
- If then .
- The first point is a consequence of .
- Let and . We know from (69) that . Let . Since then
- Let and . Let . Since and when t goes to 0 then
- 1.
- If then .
- 2.
- We have always
- 3.
- If then .
4. General Upper Bound for the Directional Hölder Spectrum
- 1.
- Case1: assume that each column of the grid contains at most one , . Then . Therefore, .
- 2.
- Case2: assume that there is only one column containing all the . Then . Therefore, .
5. Fractional Brownian Sheets
5.1. Computation of the Directional Scaling Function
5.2. Lipschitz and Directional Spectra and Thermodynamic Formalisms
6. Sierpinski Cascade Functions
6.1. Computation of the Directional Lipschitz Scaling Function
- Suppose that (i.e., ).
- -
- We have is equivalent to . In that case,
- -
- We have and is equivalent to and . In that case
- -
- In the case , we have .
- Suppose that (i.e., ).
- -
- We have is equivalent to . In that case,
- -
- In the case where , we have , therefore,
- Suppose that (i.e., ).
- -
- If then , and . So, using Remark 2, we deduce that for all .
- -
- If and then and . So, using Remark 2, we deduce that for all . Note that iff .
- -
- If then .
- Suppose that .
- -
- We have is equivalent to . In that case
- -
- In the case where , we have , therefore,□
6.2. Directional Pointwise Lipschitz Regularity
6.3. Directional Pointwise Lipschitz Spectrum and Directional Thermodynamic Formalisms
- Case 1: Assume that each column of the grid contains at most one , . Then:
- Case 2: Assume that there is only one column containing all the . Then:
6.4. Optimality of Theorem 6 in Case 1
6.5. Directional Thermodynamic Formalisms Independent on the Choice of A
7. Motivation of the Anisotropic Cascade Model on the Physics Side
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benzi, R.; Paladin, G.; Parisi, G.; Vulpani, A. On the multifractal nature of turbulence and chotic systems. J. Phys. A 1984, 17, 3521–3531. [Google Scholar] [CrossRef]
- Mandelbrot, B. Intermittent turbulence in selfsimilar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 1974, 62, 331–358. [Google Scholar] [CrossRef]
- Eckmann, B.; Ruelle, D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 1985, 57, 617–656. [Google Scholar] [CrossRef]
- Halsey, T.-C.; Jensen, M.-H.; Kadaroff, L.-P.; Procaccia, I.; Shraiman, B.-I. Fractal measures and their singularities: The charaterization of strange sets. Phys. Rev. A 1986, 33, 1141–1151. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk. 1941, 32, 16–18. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 1962, 12, 8285. [Google Scholar] [CrossRef]
- Oboukhov, A.M. Some specific features of atmospheric tubulence. J. Fluid Mech. 1962, 12, 7781. [Google Scholar] [CrossRef]
- Mandelbrot, B. Les Objets Fractals: Forme, Hasard et Dimension; Flammarian: Paris, France, 1975. [Google Scholar]
- Mandelbrot, B. The Fractal Geometry of Nature; W. H. Freeman: New York, NY, USA, 1982. [Google Scholar]
- Frisch, U.; Parisi, G. Fully developped turbulence and intermittency. In Proceedings of the International Summer School in Physics; Fermi, E., Ed.; North-Holland: Amsterdam, The Netherlands, 1985; pp. 84–88. [Google Scholar]
- Ben Nasr, F. Multifractal analysis of measures. C. R. Acad. Sci. Paris Sér. I Math. 1994, 319, 807–810. [Google Scholar]
- Ben Nasr, F.; Bhouri, I.; Heurtaux, Y. A necessary condition and sufficientn condition for a valid multifractal formalism. Math. Adv. Math. 2002, 165, 264–284. [Google Scholar] [CrossRef]
- Brown, G.; Michon, G.; Peyrière, J. On the multifractal analysis of measures. J. Statist. Phys. 1992, 66, 775–790. [Google Scholar] [CrossRef]
- Collet, P.; Lebowitz, J.; Porzio, A. The dimension specrum of some dynamical systems. J. Statist. Phys. 1987, 47, 609–644. [Google Scholar] [CrossRef]
- Falconer, K.-J. Fractal Geometry: Mathematical Foundations and Applications; John Wiley and Sons: Toronto, ON, Canada, 1990. [Google Scholar]
- Hutchinson, J. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- King, J. The singularity spectrum for general Sierpinski carpets. Adv. Math. 1995, 116, 1–11. [Google Scholar] [CrossRef]
- Olsen, L. A multifractal formalism. Adv. Math. 1995, 116, 92–195. [Google Scholar] [CrossRef]
- Olsen, L. Self-affine multifractal Sierpinski sponges in Rd. Pac. J. Math. 1998, 183, 143–199. [Google Scholar] [CrossRef]
- Rand, D.A. The singularity spectrum f(α) for cookie-cutters. Ergodic Theory Dyn. Syst. 1989, 9, 527–541. [Google Scholar] [CrossRef]
- Daubechies, I.; Lagarias, J.-C. On the thermodynamic formalism for functions. Rev. Math. Phys. 1994, 6, 1033–1070. [Google Scholar] [CrossRef]
- Arneodo, A.; Bacry, E.; Muzy, J.-F. Singularity spectrum of fractal signals from wavelet analysis: Exact results. J. Statist. Phys. 1993, 70, 635–674. [Google Scholar] [Green Version]
- Arneodo, A.; Bacry, E.; Muzy, J.-F. The thermodynamics of fractals revisited with wavelets. Physica A 1995, 213, 232–275. [Google Scholar] [CrossRef]
- Muzy, J.-F.; Arneodo, A.; Bacry, E. A multifractal formalism revisited with wavelets. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 1994, 4, 245. [Google Scholar] [CrossRef]
- Jaffard, S. Multifractal formalism for functions. Part 1: Results valid for all functions and Part 2: Selfsimilar functions. SIAM J. Math. Anal. 1997, 28, 944–998. [Google Scholar] [CrossRef]
- Ben Abid, M.; Seuret, S. Hölder regularity of μ-similar functions. Const. Approx. 2010, 31, 69–93. [Google Scholar] [CrossRef]
- Ben Slimane, M. Etude du Formalisme Multifractal pour les Fonctions. Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées, Paris, France, 1996. [Google Scholar]
- Ben Slimane, M. Formalisme Multifractal pour quelques généralisations des fonctions autosimilaires. C. R. Acad. Sci. Paris Sér. I Math. 1997, 324, 981–986. [Google Scholar] [CrossRef]
- Ben Slimane, M. Multifractal formalism and anisotropic selfsimilar functions. Math. Proc. Camb. Philos. Soc. 1998, 124, 329–363. [Google Scholar] [CrossRef] [Green Version]
- Ben Slimane, M. Multifractal formalism for selfsimilar functions under the action of nonlinear dynamical systems. Constr. Approx. 1994, 15, 209–240. [Google Scholar] [CrossRef]
- Ben Slimane, M. Multifractal formalism for selfsimilar functions expanded in singular basis. Appl. Comput. Harmon. Anal. 2001, 11, 387–419. [Google Scholar] [CrossRef]
- Jaffard, S. The multifractal nature of the Lévy processes. Probab. Theory Related Fields 1999, 114, 207–227. [Google Scholar] [CrossRef]
- Ben Slimane, M. Some functional equations revisited: The multifractal properties. Integral Transf. Spec. Funct. 2003, 14, 333–348. [Google Scholar] [CrossRef]
- Jaffard, S. The spectrum of singularities of Riemann’s function. Rev. Math. Iberoam. 1996, 12, 441–460. [Google Scholar] [CrossRef]
- Jaffard, S. On the Frisch-Parisi conjecture. J. Math. Pures Appl. 2000, 79, 525–552. [Google Scholar] [CrossRef]
- Fraysse, A. Generic validity of the multifractal formalism. SIAM J. Math. Anal. Soc. Ind. Appl. Math. 2007, 39, 593–607. [Google Scholar] [CrossRef]
- Fraysse, A.; Jaffard, S. How smooth is almost every function in Sobolev space? Rev. Math. Iberoam. 2006, 22, 663–682. [Google Scholar] [CrossRef]
- Kestener, P.; Arneodo, A. Generalizing the wavelet-based multifractal formalism to vector-valued random fields: Application to turbulent velocity and vorticity 3D numerical data. Phys. Rev. Lett. 2004, 93, 044501. [Google Scholar] [CrossRef] [PubMed]
- Abry, P.; Clausel, M.; Jaffard, S.; Roux, S.G.; Vedel, B. Hyperbolic wavelet transform: An efficient tool for multifractal analysis of anisotropic textures. Rev. Math. Iberoam. 2015, 31, 313–348. [Google Scholar] [CrossRef]
- Abry, P.; Roux, S.-G.; Wendt, H.; Messier, P.; Klein, A.-G.; Tremblay, N.; Borgnat, P.; Jaffard, S.; Vedel, B.; Coddington, J.; et al. Multiscale Anisotropic Texture Analysis and Classification of Photographic Prints: Art scholarship meets image processing algorithms. IEEE Signal Proc. Mag. 2015, 32, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Arneodo, A.; Audit, B.; Decoster, N.; Muzy, J.-F.; Vaillant, C. Wavelet-based multifractal formalism: Applications to DNA sequences, satellite images of the cloud structure and stock market data. In The Science of Disasters; Bunde, A., Kropp, J., Schellnhuber, H.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 27–102. [Google Scholar]
- Aubry, J.-M.; Maman, D.; Seuret, S. Local behavior of traces of Besov functions: Prevalent results. J. Funct. Anal. 2013, 264, 631–660. [Google Scholar] [CrossRef] [Green Version]
- Ben Braiek, H.; Ben Slimane, M. Directional regularity criteria. C. R. Acad. Sci. Paris Sér. I Math. 2011, 349, 385–389. [Google Scholar] [CrossRef]
- Ben Slimane, M.; Ben Braiek, H. Directional and anisotropic regularity and irregularity criteria in Triebel wavelet bases. J. Fourier Anal. Appl. 2012, 18, 893–914. [Google Scholar] [CrossRef]
- Ben Slimane, M. Wavelet characterizations of multi-directional regularity. Fractals 2012, 20, 245–256. [Google Scholar] [CrossRef]
- Clausel, M.; Vedel, B. Explicit constructions of operator scaling Gaussian fields. Fractals 2011, 19, 101–111. [Google Scholar] [CrossRef]
- Davies, S.; Hall, P. Fractal analysis of surface roughness by using spatial data. J. R. Stat. Soc. Ser. B Stat. Methodol. 1999, 61, 3–37. [Google Scholar] [CrossRef]
- Jaffard, S. Pointwise and directional regularity of nonharmonic Fourier series. Appl. Comput. Harmon. Anal. 2010, 28, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Ponson, L.; Bonamy, D.; Auradou, H.; Mourot, G.; Morel, S.; Bouchaud, E.; Guillot, C.; Hulin, J.P. Anisotropic self-affine properties of experimental fracture surfaces. Int. J. Fracture 2006, 140, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Roux, S.-G.; Clausel, M.; Vedel, B.; Jaffard, S.; Abry, P. Self-Similar Anisotropic Texture Analysis: The Hyperbolic Wavelet Transform Contribution. IEEE Trans. Image Proc. 2013, 22, 4353–4363. [Google Scholar] [CrossRef]
- Sampo, J.; Sumetkijakan, S. Estimations of Hölder Regularities and Direction of Singularity by Hart Smith and Curvelet Transforms. J. Fourier Anal. Appl. 2009, 15, 58–79. [Google Scholar] [CrossRef]
- Triebel, H. Interpolation Theory, Function Spaces, Differential Operators; North-Holland: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Aimar, H.; Gomez, I. Parabolic Besov regularity for the heat equation. Constr. Approx. 2012, 36, 145–159. [Google Scholar] [CrossRef]
- Biermé, H.; Meerschaert, M.M.; Scheffler, H.-P. Operator scaling stable random fields. Stoch. Proc. Appl. 2007, 117, 312–332. [Google Scholar] [CrossRef]
- Bonami, A.; Estrade, A. Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 2003, 9, 215–236. [Google Scholar] [CrossRef]
- Khalil, A.; Joncas, G.; Nekka, F.; Kestener, P.; Arneodo, A. Morphological Analysis of H I Features. II. Wavelet-based multifractal formalism. Astrophys. J. Suppl. Ser. 2006, 165, 512–550. [Google Scholar] [CrossRef]
- Ben Mabrouk, A. An adapted group dilation anisotropic multifractal formalism for functions. J. Nonlinear Math. Phys. 2008, 15, 1–23. [Google Scholar] [CrossRef]
- Ben Slimane, M.; Ben Abid, M.; Ben Omrane, I.; Halouani, B. Criteria of pointwise and uniform directional Lipschitz regularities on tensor products of Schauder functions. J. Math. Anal. Appl. 2018, 460, 496–515. [Google Scholar] [CrossRef]
- Ben Slimane, M.; Ben Braiek, H. Baire generic results for the anisotropic multifractal formalism. Rev. Mater. Complut. 2016, 29, 127–167. [Google Scholar] [CrossRef]
- Bownik, M. Atomic and molecular decomposition of anisotropic Besov spaces. Math. Z. 2005, 250, 539–571. [Google Scholar] [CrossRef]
- Bownik, M.; Ho, K.-P. Atomic and molecular decomposition of anisotropic Triebel- Lizorkin spaces. Trans. Am. Math. Soc. 2005, 385, 1469–1510. [Google Scholar]
- Farkas, W. Atomic and subatomic decompositions in anisotropic function spaces. Math. Nachr. 2000, 209, 83–113. [Google Scholar] [CrossRef]
- Führ, H. Vanishing moment conditions for wavelet atoms in higher dimensions. Adv. Comput. Math. 2016, 42, 127–153. [Google Scholar] [CrossRef]
- Garrigós, G.; Tabacco, A. Wavelet decompositions of anisotropic Besov spaces. Math. Nachr. 2002, 239, 80–102. [Google Scholar] [CrossRef]
- Garrigós, G.; Hochmuth, R.; Tabacco, A. Wavelet characterizations for anisotropic Besov spaces with 0 < p < 1. Proc. Edinb. Math. Soc. 2004, 47, 573–595. [Google Scholar]
- Hochmuth, R. Wavelet characterizations for anisotropic Besov spaces. Appl. Comput. Harmon. Anal. 2002, 12, 179–208. [Google Scholar] [CrossRef]
- Kamont, A. On the fractional anisotropic Wiener field. Probab. Math. Statist. 1996, 16, 85–98. [Google Scholar]
- Rosiene, C.-P.; Nguyen, T.-Q. Tensor-product wavelet vs. Mallat decomposition: A comparative analysis. In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), Orlando, FL, USA, 30 May–2 June 1999; Volume 3, p. 431434. [Google Scholar]
- Triebel, H. Theory of Function Spaces III; Monographs in Mathematics, 78; Birkhäuser: Basel, Switzerland, 2006. [Google Scholar]
- Triebel, H. Wavelet Bases in Anisotropic Function Spaces. Funct. Space Differ. Oper. Nonlinear Anal. 2004, 370–387. [Google Scholar]
- Berkolako, M.Z.; Novikov, I.-Y. Wavelet bases in spaces of differentiable functions of anisotropic smoothness. (Russian). Dokl. Akad. Nauk. 1992, 324, 615–618. [Google Scholar]
- Berkolako, M.Z.; Novikov, I.-Y. Unconditional bases in spaces of functions of anisotropic smoothness. (Russian). Trudy Mat. Inst. Steklov. Issled. Teor. Differ. Funktsii Mnogikh Peremen. Prilozh. 1993, 204, 35–51. [Google Scholar]
- DeVore, R.-A.; Konyagin, S.-V.; Temlyakov, V.-N. Hyperbolic wavelet approximation. Constr. Approx. 1998, 14, 1–26. [Google Scholar] [CrossRef]
- Westerink, P.-H. Subband Coding of Images. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 1989. [Google Scholar]
- Yu, T.-P.; Stoschek, A.; Donoho, D.-L. Translation and direction invariant denoising of 2D and 3D images: Experience and algorithms. Proc. SPIE 1996, 2825, 608619. [Google Scholar]
- Zavadsky, V. Image approximation by rectangular wavelet transform. J. Math. Imaging Vis. 2007, 27, 129–138. [Google Scholar] [CrossRef]
- Pesquet-Popesu, B.; Lévy-Véhel, J. Stochastic Fractal Models for Image Processing. IEEE Signal Proces. Mag. 2002, 19, 48–62. [Google Scholar] [CrossRef]
- Ayache, A.; Léger, S.; Pontier, M. Drap brownien fractionnaire. Potential Anal. 2002, 17, 31–43. [Google Scholar] [CrossRef]
- Lakhonchai, P.; Sampo, J.; Sumetkijakan, S. Shearlet transforms and Hölder regularities. Int. J. Wavelets Multiresolut. Inform. Proc. 2010, 8, 743–771. [Google Scholar] [CrossRef]
- Nualtong, K.; Sumetkijakan, S. Analysis of Hölder regularities by wavelet-like transforms with parabolic scaling. Thai J. Math. 2005, 3, 275–283. [Google Scholar]
- Donoho, D. Wedgelets: Nearly minimax estimation of edges. Ann. Stat. 1999, 27, 353–382. [Google Scholar] [CrossRef]
- Guo, K.; Labate, D. Analysis and detection of surface discontinuities using the 3D continuous shearlet transform. Appl. Comp. Harm. Anal. 2011, 30, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Candès, E.; Donoho, D. Ridgelets: A key to higher-dimensional intermittency? Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1999, 357, 2495–2509. [Google Scholar] [CrossRef]
- Mallat, S. Challenges for the 21st century. In Applied Mathematics Meets Signal Processing, Proceedings of the the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics (ICFS 2000), Singapore, 13–17 March 2000; World Scientific: Singapore, 2001; pp. 138–161. [Google Scholar]
- Fell, J.; Führ, H.; Voigtlaender, F. Resolution of the wavefront set using general continuous wavelet transforms. J. Fourier Anal. Appl. 2016, 22, 997–1058. [Google Scholar] [CrossRef]
- Sun, G.; Leng, J.; Cattani, C. A framework for circular multilevel systems in the frequency domain. Symmetry 2018, 10, 101. [Google Scholar] [CrossRef]
- Kamont, A. Isomorphism of some anisotropic Besov and sequence spaces. Studia Math. 1994, 110, 169–189. [Google Scholar] [CrossRef] [Green Version]
- Lemarié, P.-G.; Meyer, Y. Ondelettes et bases hilbertiennes. Rev. Mat. Iberoam. 1986, 1, 1–8. [Google Scholar] [CrossRef]
- Meyer, Y. Ondelettes et Opérateurs; Hermann: Paris, France, 1990. [Google Scholar]
- Daubechies, I. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 1988, 41, 909–996. [Google Scholar] [CrossRef] [Green Version]
- Rogers, C.A. Hausdorff Measures; Cambridge University Press: Cambridge, UK, 1970. [Google Scholar]
- Jaffard, S.; Lashermes, B.; Abry, P. Wavelet Leaders in Multifractal Analysis. In Wavelet Analysis and Applications; Tao, Q., Vai, M.I., Xu, Y., Eds.; Applied and Numerical Harmonic Analysis; Birkhaüser Verlag: Basel, Switzerland, 2006; pp. 219–264. [Google Scholar]
- Biferalea, L.; Procaccia, I. Anisotropy in turbulent flows and in turbulent transport. Phys. Rep. 2005, 414, 43–164. [Google Scholar] [CrossRef] [Green Version]
- Hinze, J.O. Turbulence; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Greenspan, H.P. The Theory of Rotating Fluids; Cambridge University Press: Cambridge, UK, 1968. [Google Scholar]
- Grujic, Z. Vortex stretching and anisotropic diffusion in the 3D Navier-Stokes equations. Contemp. Math. 2016, 666, 240–251. [Google Scholar]
- Constantin, P. Geometric statistics in turbulence. SIAM Rev. 1994, 36, 73–98. [Google Scholar] [CrossRef]
- Ran, Z. Statistical Theory of Isotropic Turbulence. Part IV: Multiscales and Cascade. Available online: https://arxiv.org/pdf/1012.5151 (accessed on 23 December 2010).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Slimane, M.; Ben Abid, M.; Ben Omrane, I.; Halouani, B. Directional Thermodynamic Formalism. Symmetry 2019, 11, 825. https://doi.org/10.3390/sym11060825
Ben Slimane M, Ben Abid M, Ben Omrane I, Halouani B. Directional Thermodynamic Formalism. Symmetry. 2019; 11(6):825. https://doi.org/10.3390/sym11060825
Chicago/Turabian StyleBen Slimane, Mourad, Moez Ben Abid, Ines Ben Omrane, and Borhen Halouani. 2019. "Directional Thermodynamic Formalism" Symmetry 11, no. 6: 825. https://doi.org/10.3390/sym11060825