Infrared Dim Target Detection Using Shearlet’s Kurtosis Maximization under Non-Uniform Background
Abstract
:1. Introduction
2. Multiscale Directional Representation of Image Using Shearlet Transform
3. Dim Target Detection Using Multiple Feature Fusion and Maximum Kurtosis
3.1. Shearlet Decomposition and Subband Fusion
3.2. Adaptive Threshold with Maximum Contrast Criterion
Algorithm 1 Process of the Proposed Method for Detecting Infrared Targets |
Input: An original infrared image. Output: Detection result. 1: Set the number of scales and directions for the shearlet transform; 2: Use a trous algorithm to implement the nonsubsampled Laplacian pyramid transform; 3: High-frequency subbands ; 4: 2D Fast Fourier transform (FFT) ; 5: Use Meyer wavelets as the window function ; 6: Translate to obtain the different directional components; 7: Convert to the Cartesian coordinate system to obtain shearing filters ; 8: ; 9: 2D inverse FFT to obtain the shearlet coefficients ; 10: High-frequency subbands at n directions of each scale; 11: Fuse the subbands by superposition; 12: Searching the maximum kurtosis and enhance the corresponding columns; 13: Normalization; 14: Fuse the high-frequency subbands at various scales by multiplication; 15: Maximum contrast threshold segmentation; 16: Output results. |
4. Experimental Results
4.1. Example of Detection Results
4.2. Performance Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, X.; Chen, Y.; Peng, Z.; Wu, J.; Wang, Z. Infrared image super-resolution reconstruction based on quaternion fractional order total variation with Lp quasinorm. Appl. Sci. 2018, 8, 1864. [Google Scholar] [CrossRef]
- Lai, R.; Yue, G.; Zhang, G. Total Variation Based Neural Network Regression for Nonuniformity Correction of Infrared Images. Symmetry 2018, 10, 157. [Google Scholar] [CrossRef]
- Jian, X.; Lv, C.; Wang, R. Nonuniformity Correction of Single Infrared Images Based on Deep Filter Neural Network. Symmetry 2018, 10, 612. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, Q.; Wang, J.; Zhang, Q.P. Dim target detection based on nonlinear multi-feature fusion by Karhunen-Loeve transform. Opt. Eng. 2004, 43, 2954–2958. [Google Scholar]
- Peng, Z.; Zhang, Q.; Guan, A. Extended target tracking using projection curves and matching pel count. Opt. Eng. 2007, 46, 066401. [Google Scholar]
- Beghdadi, A.; Negrate, A.L.; Lesegno, P.V. Entropic Thresholding Using a Block Soure Model. Comput. Model Image Process 1995, 57, 197–205. [Google Scholar] [CrossRef]
- Chan, D.S.K.; Langan, D.A.; Stayer, D.A. Spatial processing techniques for the detection of small targets in IR clutter. Proc. SPIE 1990, 1305, 53–62. [Google Scholar]
- Zhang, B.; Zhang, T.; Cao, Z.; Zhang, K. Fast new small target detection algorithm based on a modified partial differential equation in infrared clutter. SPIE Opt. Eng. 1990, 46, 106401–106406. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, L.; Zhang, T.; Cao, S.; Peng, Z. Infrared small target detection via non-convex rank approximation minimization joint l2, 1 norm. Remote Sens. 2018, 10, 1821. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, H.; Liu, Y.; Peng, L. Infrared Small Target Detection Based on Non-Convex Optimization with Lp-Norm Constraint. Remote Sens. 2019, 11, 559. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Z. Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef]
- Wang, G.D.; Chen, C.Y.; Shen, X.B. Facet-Based Infrared Small Target Detection Method. Electron. Lett. 2005, 41, 1244–1246. [Google Scholar] [CrossRef]
- Bosch, I.; Gomez, S.; Vergara, L.; Moragues, J. Infrared image processing and its application to forest fire surveillance. In Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, London, UK, 5–7 September 2007; pp. 283–288. [Google Scholar]
- Rosin, P.L. Training cellular automata for image processing. IEEE Trans. Image Process. 2006, 15, 2076–2087. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Yu, J.G.; Tan, Y.; Tian, J.; Ma, J. A novel spatio-temporal saliency approach for robust dim moving target detection from airborne infrared image sequences. Inf. Sci. 2016, 369, 548–563. [Google Scholar] [CrossRef]
- Leung, H.; Dubash, N.; Xie, N. Detection of Small Objects in Clutter Using a GA-RBF Neural Network. IEEE Trans. Aerosp. Electron. Syst. 2002, 38, 98–118. [Google Scholar] [CrossRef]
- DelMarco, S.; Agaian, S. The design of wavelets for image enhancement and target detection. Proc. SPIE 2009, 7351. [Google Scholar] [CrossRef]
- Tian, L.; Peng, Z. Determining the optimal order of fractional Gabor transform based on kurtosis maximization and its application. J. Appl. Geophys. 2014, 108, 152–158. [Google Scholar] [CrossRef]
- Kong, D.; Peng, Z.; Fan, H.; He, Y. Seismic random noise attenuation using directional total variation in shearlet domain. J. Seism. Explor. 2016, 25, 321–338. [Google Scholar]
- Kong, D.; Peng, Z. Seismic random noise attenuation using shearlet and total generalized variation. J. Geophys. Eng. 2015, 12, 1024–1035. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, J.S.; Cands, J.; Donoho, D.L. The Curvelet Transform for Image Denoising. IEEE Trans. Image Process. 2002, 6, 670–684. [Google Scholar]
- Arthur, L.; Zhou, J.; Do, M.N. The Nonsubsampled Contourlet Transform: Theory, Design and Applications. IEEE Trans. Image Process. 2006, 15, 3089–3101. [Google Scholar]
- Guo, K.; Labate, D. Optimally Sparse Multidimensional Representation using Shearlets. SIAM J. Math. Anal. 2007, 39, 298–318. [Google Scholar] [CrossRef]
- Easley, G.; Labate, D.; Lim, W. Sparse Directional Image Representation using the Discrete Shearlet Transform. Appl. Comput. Harmon. Anal. 2008, 25, 25–46. [Google Scholar] [CrossRef]
- Kutyniok, G.; Shahram, M.; Donoho, D.L. Development of a Digital Shearlet Transform Based on Pseudo-Polar FFT. Proc. SPIE 2009, 7446. [Google Scholar] [CrossRef]
- Kutyniok, G.; Sauer, T. Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis. SIAM J. Math. Anal. 2009, 41, 1436–1471. [Google Scholar] [CrossRef]
- Lim, W.-Q. The Discrete Shearlet Transform: A New Directional Transform and Compactly Supported Shearlet Frames. IEEE Tran. Image Process. 2010, 19, 1166–1180. [Google Scholar]
- Shensa, M.J. The discrete wavelet transform: Wedding the àtrous and mallat algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef]
Original Images | NSCT | Shearlet Transform | |||||
---|---|---|---|---|---|---|---|
PSNR | EST(s) | PSNR | EST(s) | ||||
Figure 4a | 1.7561 | 11.5748 | 11.9017 | 24.91 | 13.1658 | 11.9112 | 1.41 |
Figure 5a | 0.7972 | 33.2920 | 5.2957 | 25.85 | 30.8466 | 5.4511 | 1.44 |
Method | PR (%) | FAR (%) |
---|---|---|
NSCT | 99.0 | 7.0 |
Shearlet transform | 99.0 | 5.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Zhang, T.; Liu, Y.; Li, M.; Peng, Z. Infrared Dim Target Detection Using Shearlet’s Kurtosis Maximization under Non-Uniform Background. Symmetry 2019, 11, 723. https://doi.org/10.3390/sym11050723
Peng L, Zhang T, Liu Y, Li M, Peng Z. Infrared Dim Target Detection Using Shearlet’s Kurtosis Maximization under Non-Uniform Background. Symmetry. 2019; 11(5):723. https://doi.org/10.3390/sym11050723
Chicago/Turabian StylePeng, Lingbing, Tianfang Zhang, Yuhan Liu, Meihui Li, and Zhenming Peng. 2019. "Infrared Dim Target Detection Using Shearlet’s Kurtosis Maximization under Non-Uniform Background" Symmetry 11, no. 5: 723. https://doi.org/10.3390/sym11050723