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Abstract

:

In this study, we introduce a new type of contractive mapping to establish the existence and uniqueness of fixed points for this type of contraction. Some related examples are built demonstrating the superiority of our results compared to the existing onesin the literature. As applications of the results obtained, some new fixed point theorems are presented for graph-type contractions. Furthermore, sufficient conditions are discussed to ensure the existence underlying various approaches of a solution for a functional equation originating in dynamic programming.
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1. Introduction and Preliminaries


Let T be a self-mapping on a nonempty set M, and denote the set of all real numbers, the set of all non-negative real numbers, and the set of all natural numbers by R,R+ andN, respectively. By Fix(T)={u∈M:Tu=u}, we denote the set of all fixed points of T. We denote by Σ the set of functions σ:(0,∞)→(1,∞) satisfying the following conditions:




	(σ1)

	
σ is non-decreasing;




	(σ2)

	
for each sequence {un}⊂(0,∞), we have limn→∞σ(un)=1 iff limn→∞un=0;




	(σ3)

	
there exist r∈(0,1) and λ∈(0,∞] such that limt→0+σ(t)−1tr=λ.









Jleli and Samet introduced in [1] a new type of contraction by using the function σ and established the following fixed point theorem.



Theorem 1.

Let (M,d) be a complete metric space and T:M→M be a given mapping. Suppose that there exist k∈(0,1) and σ∈Σ such that:


u,v∈M,d(Tu,Tv)>0⇒σ(d(Tu,Tv))≤[σ(d(u,v))]k.











Then, T has a unique fixed point.





Later, Isik and Shatanawi [2] stated that the condition (σ2) is not required in the proof of Theorem 1 with the help of the following lemma.



Lemma 1.

[2] Let σ:(0,∞)→(1,∞) be a non-decreasing function and tn⊂(0,∞) a decreasing sequence such that limn→∞σ(tn)=1. Then, we have limn→∞tn=0.





We now denote by Ξ the set of all functions σ:(0,∞)→(1,∞) satisfying the conditions (σ1) and (σ3). In the following examples, we see some functions that belong to the set Ξ, but do not belong to Σ.



Example 1.

[2] Define σ:(0,∞)→(1,∞) with σ(t)=et+1. Evidently, σ satisfies (σ1), and since limt→0+(et+1−1)/tr=∞ for r∈(0,1), also (σ3). However, σ does not satisfy the condition (σ2). Indeed, consider tn=1n for all n∈N, then limn→∞tn=0 and limn→∞σ(tn)=e≠1. Consequently, σ∈Ξ while σ∉Σ.





Example 2.

[2] Let a>1 and σ(t)=a+ln(t+1). It can easily be seen that σ satisfies the conditions (σ1) and (σ3). However, if we take tn=1n for all n∈N, then limn→∞tn=0 and limn→∞σ(tn)=a>1. Hence, σ∈Ξ and σ∉Σ.





In 2012, Samet et al. [3] adopted the notion of α-ψ-contractive mappings and confirmed the existence and uniqueness of a fixed point for such mappings. Let Ψ be the family of nondecreasing functions ψ:[0,∞)→[0,∞) in order that ∑n=1∞ψn(t)<∞ for all t>0. If ψ∈Ψ, then it is easy to see that ψ(t)<t for all t>0.



Let (M,d) be a metric space. A self-map T on M is stated to be an α-ψ-contraction, if:


α(u,v)d(Tu,Tv)≤ψ(d(u,v)),forallu,v∈M,



(1)




where ψ∈Ψ and α:M×M→[0,∞).



A self-map T on M is stated to be α-admissible, if there exists α:M×M→[0,+∞) in order that:


u,v∈M,α(u,v)≥1⟹α(Tu,Tv)≥1.











Using this concept, many fixed point results appeared; see [4,5,6,7,8,9,10,11,12,13,14,15]. The results presented in [3] can be abstracted as follows.



Theorem 2 

([3]). Given a complete metric space (M,d), let T:M→M be a mapping such that it is α-admissible and an α-ψ-contraction. Assume that the following conditions are satisfied:




	(i)

	
there exists ξ0∈M in order that αξ0,Tξ0≥1;




	(ii)

	
the mapping T is continuous or;




	(iii)

	
for each sequence ξn in M in order that ξn→u∈M and αξn,ξn+1≥1, then αξn,u≥1 for all n∈N.









Then, the mapping T possesses a fixed point. If in addition, we assume that for every (ξ,u)∈M2, there exists z∈M in order that α(ξ,z)≥1 and α(u,z)≥1, then such a fixed point is unique.





In the indicated study, we introduce a new type of contractive mapping and establish the existence and uniqueness results for fixed points of this new type of contraction. Our results generalize and improve Theorems 1 and 2 and many others in the literature. Several examples are constructed in order to illustrate the generality of our results. As applications of the obtained results, some new fixed point theorems are presented for graph-type contractions. Moreover, sufficient conditions are discussed to ensure the existence underlying various approaches of a solution for a functional equation originating in various dynamic programming.




2. Main Results


First of all, we collect some notions and notations to state the main theorems.



Definition 1.

Given a metric space (M,d) and α:M×M→[0,∞), let T be a self-mapping on M. Denote the set A⊆M×M by:


A(T,α)=(u,v):d(Tu,Tv)>0andα(u,v)≥1.











Then, T is called an (α-σ-ψ)-contraction, if there exist k∈(0,1),ψ∈Ψ and σ∈Ξ in order that:


σ(d(Tu,Tv))≤[σ(ψ(d(u,v)))]k,forall(u,v)∈A(T,α).



(2)









Remark 1.

Let (M,d) be a metric space. If T:M→M is an (α-σ-ψ)-contraction, then by (2), we deduce:


ln[σ(d(Tu,Tv))]≤kln[σ(ψ(d(u,v)))]<ln[σ(ψ(d(u,v)))].











Using (σ1), we have that:


d(Tu,Tv)<ψ(d(u,v)),forall(u,v)∈A(T,α).











The last inequality gives us that:


u,v∈M,α(u,v)≥1⟹d(Tu,Tv)≤ψ(d(u,v)).













Now, we can have the main theorem of this study.



Theorem 3.

Let (M,d) be a complete metric space and T:M→M be an (α-σ-ψ)-contraction. Assume that the following conditions are satisfied:




	(i)

	
T is α-admissible;




	(ii)

	
there exists ξ0∈M in order that αξ0,Tξ0≥1;




	(iii)

	
T is continuous or;




	(iv)

	
for every ξnn∈N⊂M in order that ξn→u∈M and αξn,ξn+1≥1 for all n∈N, then αξn,u≥1 for all n∈N.









Then, T possesses a fixed point. Moreover, if α(ξ,u)≥1 for all ξ,u∈Fix(T), then we have a unique fixed point.





Proof. 

By virtue of the assertion (ii), then there exists ξ0∈M in order that αξ0,Tξ0≥1. Define a sequence ξn in M by ξn=Tξn−1=Tnξ0 for each n∈N. If there exists n0∈N in order that ξn0=ξn0+1, then ξn0=Tξn0. This finishes the proof. Due to this reason, we suppose that ξn≠ξn+1, for all n, that is,


d(Tξn−1,Tξn)>0,foralln∈N.



(3)







Since αξ0,ξ1=αξ0,Tξ0≥1 and T is α-admissible, we obtain:


α(ξn,ξn+1)≥1,foralln∈N∪0.



(4)







Combining (3) and (4), we deduce that:


(ξn,ξn+1)∈A(T,α),foralln∈N∪0.



(5)







Taking (2) and (5) into consideration, we obtain:


σ(d(ξn,ξn+1))=σ(d(Tξn−1,Tξn))≤[σ(ψ(d(ξn−1,ξn)))]k,foralln∈N.











Since σ is non-decreasing, we have:


σ(d(ξn,ξn+1))<[σ(d(ξn−1,ξn))]k,foralln∈N.











Letting un:=d(ξn,ξn+1) for all n∈N, from the above inequality, we infer:


σ(un)<[σ(un−1)]k<[σ(un−2)]k2<⋯<[σ(u0)]kn.











Thus, for all n∈N, we have:


1<σ(un)<[σ(u0)]kn.



(6)







Taking the limit of (6) as n→∞, we obtain:


limn→∞σ(un)=1,








which implies by Lemma 1 that:


limn→∞un=0.



(7)







To prove that ξn is a Cauchy sequence, let us consider condition (σ3). Then, there exist r∈(0,1) and λ∈(0,∞] in order that:


limn→∞σ(un)−1(un)r=λ.



(8)







Take δ∈(0,λ). By the definition of the limit, there exists n1∈N in order that:


(un)r≤δ−1(σ(un)−1),foralln>n1.











Using (6) and the above inequality, we deduce:


n(un)r≤δ−1n([σ(u0)]kn−1),foralln>n1.











This implies that:


limn→∞n(un)r=limn→∞n(d(ξn,ξn+1))r=0.











Thence, there exists n2∈N in order that:


d(ξn,ξn+1)≤1n1/r,foralln>n2.



(9)







Let m>n>n2. Then, using the triangular inequality and (9), we have:


d(ξn,ξm)≤∑k=nm−1d(ξk,ξk+1)≤∑k=nm−11k1/r≤∑k=n∞1k1/r








and hence, ξn is a Cauchy sequence in M. From the completeness of (M,d), then there exists u∈M in order that ξn→u as n→∞. If T is continuous, then ξn+1=Tξn→Tu. The uniqueness of the limit yields that u=Tu.



Now, assume that the assumption (iv) holds. Then, α(ξn,u)≥1 for all n∈N. If there exists k∈N in order that d(ξk+1,Tu)=0, then from the uniqueness of the limit, u=Tu. Therefore, the proof is completed. Hence, there exists n3∈N in order that d(Tξn,Tu)>0 for all n>n3. Thus, (ξn,u)∈A(T,α) for all n>n3. By considering Remark 1 (i), we have:


d(ξn+1,Tu)=d(Tξn,Tu)≤ψ(d(ξn,u)),








and so:


0<d(ξn+1,Tu)<d(ξn,u),foralln>n3.











Taking the limit as n→∞ in the above inequality, we obtain d(u,Tu)=0, and so, u=Tu. Now, we prove that the fixed point of T is unique. Suppose that p,q∈Fix(T) in order that d(p,q)>0. Then, d(Tp,Tq)>0, and by the hypothesis, α(p,q)≥1. Hence, we deduce that (p,q)∈A(T,α). Regarding Remark 1 (i), we obtain:


d(p,q)=d(Tp,Tq)≤ψ(d(p,q))<d(p,q),








which implies that p=q. □





The following example shows that Theorem 3 is a proper generalization of Theorems 1 and 2.



Example 3.

Let M=[0,∞) with the usual metric du,v=u−v for all u,v∈M. Consider:


Tu=12e−2u,if u∈0,4,2u,if u>4,andαu,v=8,if u,v∈0,4,0,otherwise.








Here, we infer that:


A(T,α)=(u,v)∈M×M:d(Tu,Tv)>0andα(u,v)≥1=(u,v)∈M×M:u≠vandu,v∈0,4.











Firstly, we claim that T is an (α-σ-ψ)-contraction with k=e−1,ψ(t)=t2 and σ(t)=etet. For all u,v∈A(T,α), that is, for all u,v∈0,4 with u≠v,


σdTu,Tv=σe−2u−v2=ee−2u−v2ee−2u−v2≤ee−1u−v2eu−v2=ee−1ψ(d(u,v))eψ(d(u,v))=[σ(ψ(d(u,v)))]k.











This means that T is an (α-σ-ψ)-contraction.



Now, let u,v∈M in order that αu,v≥1. Then, u,v∈0,4 implies that Tu,Tv∈0,4, and so, αTu,Tv≥1. Hence, the contraction T is α-admissible. Moreover, there exists ξ0=4 in order that αξ0,Tξ0≥1.



Let ξn be a sequence in order that ξn→u and αξn,ξn+1≥1 for all n. Then, ξn∈0,4 for all n, and so, u∈0,4 as ξn→u. Thus, αξn,u≥1 for all n.



Consequently, all hypotheses of Theorem 3 are fulfilled. Here, u=0 is the unique fixed point.



Furthermore, for u=0 and v=5, we have:


σdTu,Tv=σdT0,T5=σ10>[σ5]k=[σd(u,v)]k,








for all σ∈Ξ and k∈(0,1). Therefore, T does not verify the axioms of σ-contractions, i.e., Theorem 1 cannot be utilized in this example.



Furthermore, for u=0 and v=4, we obtain:


α(u,v)dTu,Tv=α(0,4)dT0,T4=8·12e−24>42=ψ(d(u,v)).











Thus, T is not an α-ψ-contraction, and hence, Theorem 2 cannot be applied in this example either.





Corollary 1.

Let T:M→M be an α-admissible self-mapping on a complete metric space (M,d). Suppose that:




	(i)

	
there exists ξ0∈M in order that αξ0,Tξ0≥1;




	(ii)

	
T is continuous or;




	(iii)

	
for every ξnn∈N⊂M in order that ξn→x∈M and αξn,ξn+1≥1 for all n∈N, then αξn,x≥1 for all n∈N;




	(iv)

	
there exist k∈(0,1),ψ∈Ψ and σ∈Ξ in order that:


u,v∈M,Tu≠Tv⟹σ(α(u,v)d(Tu,Tv))≤[σ(ψ(d(u,v)))]k.



(10)













Then, there exists a fixed point of T. Moreover, if α(u,v)≥1 for all u,v∈Fix(T), then such a fixed point is unique.





Proof. 

Let u,v∈M in order that αu,v≥1 and d(Tu,Tv)>0. Then, (u,v)∈A(T,α). Using (σ1) and (10), we have:


σ(d(Tu,Tv))≤σ(α(u,v)d(Tu,Tv))≤[σ(ψ(d(u,v)))]k,








and hence:


σ(d(Tu,Tv))≤[σ(ψ(d(u,v)))]k,forall(u,v)∈A(T,α).











This yields that (2) is satisfied. Thus, the rest of the proof follows from Theorem 3. □





Remark 2.

Let T be a self-mapping on a metric space (M,d) fulfilling the inequality (10). Then:


α(u,v)d(Tu,Tv)<ψ(d(u,v)),








for all u,v∈M with d(Tu,Tv)>0. Hence, we infer that:


α(u,v)d(Tu,Tv)≤ψ(d(u,v)),forallu,v∈M.













Corollary 2.

Let T:M→M be a self-mapping on a complete metric space (M,d). If there exist k∈(0,1),ψ∈Ψ and σ∈Ξ in order that:


u,v∈M,d(Tu,Tv)>0⟹σ(d(Tu,Tv))≤[σ(ψ(d(u,v)))]k.











Then, there exists a unique fixed point of T.





Proof. 

It is enough to take α(u,v)=1 in Corollary 1. □





Corollary 3.

Let (M,d) be a complete metric space and T:M→M be a specified mapping. If there exist k,c∈(0,1), and σ∈Ξ in order that:


u,v∈M,d(Tu,Tv)>0⟹σ(d(Tu,Tv))≤[σ(cd(u,v))]k,








then the mapping T has a unique fixed point.





Proof. 

It follows from Corollary 2 with ψ(t)=ct. □






3. Applications


Applying our obtained results, we will:




	
present some results for graphic contractions;



	
ensure the existence a solution for a functional equation originating in dynamic programming.








3.1. Some Results for Graphic Contractions


First, Jachymski [16] provided fixed point results when considering graphic contractions. For other details, see [12,17,18,19,20,21,22,23].



We start with the following.



Definition 2 

([16]). The self-mapping T on M is called a Banach G-contraction or just a G-contraction, if:


∀u,v∈M,u,v∈EG⇒Tu,Tv∈EG



(11)




and T decreases the weights of edges of G as follows:


∃k∈(0,1),∀u,v∈M,u,v∈EG⇒dTu,Tv≤kd(u,v).



(12)









Definition 3 

([16]). One says that T:M→M is G-continuous, if for u,{ξn} in M such that ξn→u when n tends to infinity and (ξn,ξn+1)∈E(G) for all n∈N implies Tξn→Tu as n→∞.





Note that if T is G-continuous, then T is continuous. However, the converse of the statement is not true in general.



Definition 4.

We endow a metric space M,d with a graph G. Given T:M→M. Denote by G⊆M×M the set:


G(T,G)=(u,v):d(Tu,Tv)>0andu,v∈EG.











Such T is stated to be an (α-σ-ψ)-G-contraction, if there exist k∈(0,1),ψ∈Ψ and σ∈Ξ in order that:


σ(d(Tu,Tv))≤[σ(ψ(d(u,v)))]k,forall(u,v)∈G(T,G).



(13)









Theorem 4.

Let M,d be a complete metric space endowed with a graph G and T:M→M be an (α-σ-ψ)-G-contraction. Assume that the following conditions are satisfied:




	(i)

	
T preserves edges of G;




	(ii)

	
there exists ξ0∈M in order that ξ0,Tξ0∈E(G);




	(iii)

	
T is G-continuous or;




	(iv)

	
G satisfies the property (C), that is, for every ξnn∈N⊂V(G) with ξn→x as n→∞ and ξn,ξn+1∈E(G) for all n∈N implies that ξn,x∈E(G) for all n∈N.









Then, there exists a fixed point of T. Moreover, if (u,v)∈E(G) for all u,v∈Fix(T), then such a fixed point is unique.





Proof. 

Define the function α:M×M→[0,∞) by:


αu,v=1,ifu,v∈EG,0,otherwise








for all u,v∈M. Let (u,v)∈A(T,α). Then, d(Tu,Tv)>0 and αu,v≥1. By the definition of α, we have d(Tu,Tv)>0 and (u,v)∈E(G), that is, (u,v)∈G(T,G). Since T is an (α-σ-ψ)-G-contraction, we obtain:


σ(d(Tu,Tv))≤[σ(ψ(d(u,v)))]k,








that is,


σ(d(Tu,Tv))≤[σ(ψ(d(u,v)))]k,forall(u,v)∈A(T,α).











This means that T satisfies the inequality (2). To prove that T is α-admissible, let αu,v≥1 for all u,v∈M. Then, u,v∈EG. By the virtue of (i), we get (Tu,Tv)∈E(G), and hence, α(Tu,Tv)≥1. This proves that T is α-admissible. Furthermore, clearly, iii together with iv yield iii and iv of Theorem 3. Thus, all hypotheses of Theorem 3 hold, so T has a fixed point. We claim that such a fixed point is unique. On the contrary, assume that u,v∈Fix(T). Then, by the hypothesis, u,v∈EG, and so, αu,v≥1. Therefore, from Theorem 3, T has a unique fixed point. □





Example 4.

Following Example 2.8 in [21], consider M=[0,1] is endowed with the usual metric. Let G be a graph with V(G)=M and E(G)=Δ∪1n,1n+1:n∈N∪18,14∪1n,0:n∈N. Consider:


Tu=14,if 0≤u<1,18,if u=1.











Now, we prove that T is an (α-σ-ψ)-G-contraction with k=12,ψ(t)=3t4 and σ(t)=1+t. Note that (u,v)∈G(T,G) if and only if u=1 and v∈{0,12}. Then, we need to check the following cases:



Case 1. If u=1 and v=0, we have:


σdT1,T0=σ18−14=σ18=98=1.125σψd1,0k=σ3412=7412=1.3228⟹σdT1,T0≤σψd1,0k.











Case 2. If u=1 and v=12, we get:


σdT1,T12=σ18−14=σ18=98=1.125σψd1,12k=σ3812=11812=1.1726⟹σdT1,T12≤σψd1,12k.











Thus, T is an (α-σ-ψ)-G-contraction in all possible cases. Furthermore, it is easy to see that:




	(i)

	
T preserves edges of G;




	(ii)

	
ξ0,Tξ0∈E(G) for ξ0∈14,13;




	(iii)

	
G satisfies the property (C).









All hypotheses of Theorem 4 are verified. Here, Fix(T)=14.






3.2. Existence Theorem for a Solution of a Functional Equation


It is known that dynamic programming provides useful tools for people working in the fields of optimization and computer programming. In particular, consider the following functional equation:


p(u)=supv∈Dfu,v+Ku,v,pϑu,v,u∈S,



(14)




where f:S×D→R and K:S×D×R→R are bounded; ϑ:S×D→S,S and D are Banach spaces; S is a state space; and D is a decision space. We refer the reader to [17,24,25,26,27,28] for more details.



Here, we discuss the existence of a bounded solution of the functional Equation (14) by using the obtained results in the previous section.



Denote by B(S) the set of all real bounded functions defined on S. For h∈B(S), define h=supu∈S|h(u)|. Given the Banach space (B(S),·) where:


d(h,k)=supu∈S|h(u)−k(u)|,








for all h,k∈B(S), represents a metric on B(S). We also define the self-operator T on B(S) as:


Th(u)=supv∈Dfu,v+Ku,v,hϑu,v,u∈S,h∈B(S).











Consider the following assumptions:




	(A1)

	
there exists a function η:B(S)×B(S)→R in order that if η(h,h1)≥0 for all h,h1∈B(S) with h≠h1, we have:


Ku,v,hu−Ku,v,h1u≤1+ψ(hu−h1u)k−12,








where u,v∈S×D,k∈(0,1) and ψ∈Ψ;




	(A2)

	
for all h,h1∈B(S),η(h,h1)≥0 implies that ηTh,Th1≥0;




	(A3)

	
there exists h0∈B(S) in order that ηh0,Th0≥0;




	(A4)

	
if {hn} is a sequence in B(S) in order that hn→h∈B(S) and η(hn,hn+1)≥0, n∈N, then η(hn,h)≥0, n∈N.









Theorem 5.

Suppose that the assumptions A1–A4 are satisfied. Then, the functional Equation (14) has at least one bounded solution.





Proof. 

Let u∈S and h1,h2∈B(S) with ηh1,h2≥0 and Th1≠Th2. Then, from (A1), there exist v∈D in order that:


d(Th1,Th2)=supu∈STh1(u)−Th2(u)=supu∈Ssupv∈Dfu,v+Ku,v,h1ϑu,v−supv∈Dfu,v+Ku,v,h2ϑu,v≤supu∈Ssupv∈DKu,v,h1ϑu,v−Ku,v,h2ϑu,v≤supx∈Ssupv∈D1+ψ(h1ϑu,v−h2ϑu,v)k−12≤supu∈S1+ψ(h1−h2)k−12≤1+ψ(d(h1,h2))k−12,








and so:


d(Th1,Th2)≤1+ψ(d(h1,h2))k−12.



(15)







From the above inequality, we obtain:


1+d(Th1,Th2)≤1+ψ(d(h1,h2))k.



(16)







By setting σ∈Ξ by σ(t)=1+t for all t>0 and using (16), we infer:


σ(d(Th1,Th2))≤σ(ψ(d(h1,h2)))k,



(17)




for all h1,h2∈B(S) with ηh1,h2≥0 and Th1≠Th2.



Now, define α:B(S)×B(S)→[0,∞) by:


αh1,h2=1,ifηh1,h2≥0,0,otherwise.











Thus, it follows from (17) that:


σ(d(Th1,Th2))≤σ(ψ(d(h1,h2)))k,








for all h1,h2∈B(S) with αh1,h2≥1 and d(Th1,Th2)>0. This means that T is an (α-σ-ψ)-contraction. Furthermore, the assertions (A2),(A3),(A4) imply the conditions (i),(ii)and(iv) of Theorem 3, respectively. Consequently, there exists a fixed point of T. Hence, there exists a solution in B(S) for the functional Equation (14). □





By using the same method in the proof of Theorems 5 and 3 together with the function σ∈Ξ defined by σ(t)=et, we get the following result.



Theorem 6.

In Theorem 5, replace the assumption (A1) by the following, besides retaining the rest:




	(A1∗)

	
there exists a function η:B(S)×B(S)→R in order that if η(h,h1)≥0 for all h,h1∈B(S) with h≠h1, we have:


Ku,v,hu−Ku,v,h1u≤e−τ(ψ(h−h1)),








where u,v∈S×D,τ∈(0,∞) and ψ∈Ψ.









Then, Equation (14) has at least one bounded solution.
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