Tracking Control of a Class of Chaotic Systems
Abstract
1. Introduction
2. Problem Formation
3. Main Result
3.1. The Reference Model
3.2. Control Design
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ott, E.; Gerbogi, C.; Yorke, J.A. Controlling Chaos. Phys. Rev. Lett. 1990, 64, 1196–1199. [Google Scholar] [CrossRef]
- Pecora, L.; Carroll, T. Synchronization in Chaotic Systems. Phys. Rev. Lett. 1990, 64, 821–824. [Google Scholar] [CrossRef]
- Rosenblum, M.G.; Pikovsky, A.S.; Kurths, J. Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 1996, 76, 1804–1807. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, M.G.; Pikovsky, A.S.; Kurths, J. From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 1997, 78, 4193–4196. [Google Scholar] [CrossRef]
- Hu, J.; Chen, S.; Chen, L. Adaptive control for anti-synchronization of Chua’s chaotic system. Phys. Lett. A 2005, 339, 455–460. [Google Scholar] [CrossRef]
- Mainieri, R.; Rehacek, J. Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 1999, 82, 3042–3045. [Google Scholar] [CrossRef]
- Ren, L.; Guo, R.W.; Vincent, U.E. Coexistence of synchronization and anti-synchronization in chaotic systems. Arch. Control Sci. 2016, 26, 69–79. [Google Scholar] [CrossRef]
- Guo, R.W. Simultaneous synchronization and anti-synchronization of two identical new 4D chaotic systems. Chin. Phys. Lett. 2011, 28, 040205. [Google Scholar] [CrossRef]
- Guo, R. A simple adaptive controller for chaos and hyperchaos synchronization. Phys. Lett. A 2008, 372, 5593–5597. [Google Scholar] [CrossRef]
- Yu, W.G. Stabilization of three-dimensional chaotic systems via single state feedback controller. Phys. Lett. A 2010, 374, 1488–1492. [Google Scholar] [CrossRef]
- Wang, Z.F.; Shi, X.R. Anti-synchronization of liu system and Lorenz system with known and unknown parameters. Nonlinear Dyn. 2009, 57, 425–430. [Google Scholar] [CrossRef]
- Al-mahbashi, G.; Md Noorani, M.S.; Bakar, S.A. Projective lag synchronization in drive-response dynamical networks with delay coupling via hybrid feedback control. Nonlinear Dyn. 2015, 82, 1569–1579. [Google Scholar] [CrossRef]
- Du, H.Y.; Shi, P. A new robust adaptive control method for modified function projective synchronization with unknown bounded parametric uncertainties and external disturbances. Nonlinear Dyn. 2016, 85, 355–363. [Google Scholar] [CrossRef]
- Liu, L.X.; Guo, R.W. Control problems of Chen-Lee system by adaptive control method. Nonlinear Dyn. 2017, 87, 503–510. [Google Scholar] [CrossRef]
- Guo, R.W. Projective synchronization of a class of chaotic systems by dynamic feedback control method. Nonlinear Dyn. 2017, 90, 53–64. [Google Scholar] [CrossRef]
- Selmic, R.R.; Lewis, F.L. Deadzone compensation in motion control systems using neural networks. IEEE Trans. Autom. Control 2000, 45, 602–613. [Google Scholar] [CrossRef]
- Selmic, R.R.; Lewis, F.L. Neural net backlash compensation with Hebbian tuning using dynamic inversion. Automatica 2001, 37, 1269–1277. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Wen, C. Robust adaptive output control of uncertain nonlinear plants with unknown backlash nonlinearity. IEEE Trans. Autom. Control 2007, 52, 503–509. [Google Scholar] [CrossRef]
- Yu, D.C.; Wu, A.G.; Yang, C.P. A novel sliding mode nonlinear proportional-integral control scheme for controlling chaos. Chin. Phys. 2005, 14, 914–921. [Google Scholar]
- Yu, D.C.; Wu, A.G.; Wang, D.Q. A simple asymptotic trajectory control of full states of a unified chaotic system. Chin. Phys. 2006, 15, 306–309. [Google Scholar]
- Bazhenov, V.A.; Pogorelova, O.S.; Postnikova, T.G. Intermittent transition to chaos in vibroimpact system. Appl. Math. Nonlinear Sci. 2018, 3, 475–486. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Tam, L.M.; Si Tou, W.M. Parametric study of the fractional order Chen-Lee system. Chaos Solitons Fractals 2008, 37, 817–826. [Google Scholar] [CrossRef]
- Qi, G.Y.; Du, S.Z.; Chen, G.R.; Chen, Z.Q.; Yuan, Z.Z. On a four-dimensional chaotic system. Chaos Solitons Fractals 2005, 23, 1671–1682. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, A.; Li, L.; Wang, Z.; Guo, R. Tracking Control of a Class of Chaotic Systems. Symmetry 2019, 11, 568. https://doi.org/10.3390/sym11040568
Yang A, Li L, Wang Z, Guo R. Tracking Control of a Class of Chaotic Systems. Symmetry. 2019; 11(4):568. https://doi.org/10.3390/sym11040568
Chicago/Turabian StyleYang, Anqing, Linshan Li, Zuoxun Wang, and Rongwei Guo. 2019. "Tracking Control of a Class of Chaotic Systems" Symmetry 11, no. 4: 568. https://doi.org/10.3390/sym11040568
APA StyleYang, A., Li, L., Wang, Z., & Guo, R. (2019). Tracking Control of a Class of Chaotic Systems. Symmetry, 11(4), 568. https://doi.org/10.3390/sym11040568