# Isoperimetric Numbers of Randomly Perturbed Intersection Graphs

## Abstract

**:**

## 1. Introduction

## 2. Results

**Theorem**

**1.**

**Remark**

**1.**

**Remark**

**2.**

**Theorem**

**2.**

## 3. Illustration on Small Networks

**Remark**

**3.**

## 4. Proofs

**Proof of Theorem**

**1.**

**Lemma**

**1.**

**Proof of Theorem**

**2.**

## 5. Concluding Remarks

## Acknowledgments

## Conflicts of Interest

## References

- Newman, M.E.J. Networks: An Introduction; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Guillaume, J.L.; Latapy, M. Bipartite structure of all complex networks. Inf. Process. Lett.
**2004**, 90, 215–221. [Google Scholar] [CrossRef] [Green Version] - Kadushin, C. Understanding Social Networks: Theories, Concepts, and Findings; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature
**1998**, 393, 440–442. [Google Scholar] [CrossRef] - Newman, M.E.J. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA
**2001**, 98, 404–409. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Eschenauer, L.; Gligor, V. A key-management scheme for distributed sensor networks. In Proceedings of the 9th ACM Conference on Computer and Communications Security, Washington, DC, USA, 18–22 November 2002; pp. 41–47. [Google Scholar]
- Marczewski, E. Sur deux propriétés des classes d’ensembles. Fund. Math.
**1945**, 33, 303–307. [Google Scholar] [CrossRef] - Karoński, M.; Scheinerman, E.R.; Singer-Cohen, K.B. On random intersection graphs: The subgraph problem. Comb. Probab. Comput.
**1999**, 8, 131–159. [Google Scholar] [CrossRef] - Singer-Cohen, K.B. Random Intersection Graphs. Ph.D. Thesis, Johns Hopkins University, Baltimore, MD, USA, 1995. [Google Scholar]
- Frieze, A.; Karoński, M. Introduction to Random Graphs; Cambridge University Press: New York, NY, USA, 2016. [Google Scholar]
- Shang, Y. Degree distributions in general random intersection graphs. Electron. J. Combin.
**2010**, 17, R23. [Google Scholar] - Kendall, M.; Martin, K.M. Graph-theoretic design and analysis of key predistribution schemes. Des. Codes Cryptogr.
**2016**, 81, 11–34. [Google Scholar] [CrossRef] - Zhao, J.; Yagan, O.; Gligor, V. On connectivity and robustness in random intersection graphs. IEEE Trans. Autom. Contr.
**2017**, 62, 2121–2136. [Google Scholar] [CrossRef] - Rybarczyk, K. The chromatic number of random intersection graphs. Discuss. Math. Graph Theory
**2017**, 37, 465–476. [Google Scholar] [CrossRef] - Bloznelis, M.; Godehardt, E.; Jaworski, J.; Kurauskas, V.; Rybarczyk, K. Recent progress in complex network analysis: Models of random intersection graphs. In European Conference on Data Analysis; Lausen, B., Krolak-Schwerdt, S., Boehmer, M., Eds.; Springer: Berlin, Germany, 2015; pp. 69–78. [Google Scholar]
- Bloznelis, M.; Godehardt, E.; Jaworski, J.; Kurauskas, V.; Rybarczyk, K. Recent progress in complex network analysis: Properties of random intersection graphs. In European Conference on Data Analysis; Lausen, B., Krolak-Schwerdt, S., Boehmer, M., Eds.; Springer: Berlin, Germany, 2015; pp. 79–88. [Google Scholar]
- Bollobás, B. The isoperimetric number of random regular graphs. Eur. J. Comb.
**1988**, 9, 241–244. [Google Scholar] [CrossRef] - Alon, N. On the edge-expansion of graphs. Comb. Probab. Comput.
**1997**, 6, 145–152. [Google Scholar] [CrossRef] - Benjamini, I.; Haber, S.; Krivelevich, M.; Lubetzky, E. The isoperimetric constant of the random graph process. Random Struct. Algorithms
**2008**, 32, 101–114. [Google Scholar] [CrossRef] - Puder, D. Expansion of random graphs: New proofs, new results. Invent. Math.
**2015**, 201, 845–908. [Google Scholar] [CrossRef] - Hoory, S.; Linial, N.; Wigderson, A. Expander graphs and their applications. Bull. Am. Math. Soc.
**2006**, 43, 439–561. [Google Scholar] [CrossRef] - Estrada, E. Spectral scaling and good expansion properties in complex networks. Europhys. Lett.
**2006**, 73, 649–655. [Google Scholar] [CrossRef] [Green Version] - Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA
**2006**, 103, 8577–8582. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Newman, M.E.J.; Watts, D.J. Renormalization group analysis of the small-world network model. Phys. Lett. A
**1999**, 263, 341–346. [Google Scholar] [CrossRef] [Green Version] - Shang, Y. A sharp threshold for rainbow connection in small-world networks. Miskolc Math. Notes
**2012**, 13, 493–497. [Google Scholar] [CrossRef] - Bohman, T.; Frieze, A.; Martin, R. How many random edges make a dense graph Hamiltonian? Random Struct. Algorithms
**2003**, 22, 33–42. [Google Scholar] [CrossRef] - Bohman, T.; Frieze, A.; Krivelevich, M.; Martin, R. Adding random edges to dense graphs. Random Struct. Algorithms
**2004**, 24, 105–117. [Google Scholar] [CrossRef] [Green Version] - Krivelevich, M.; Sudakov, B.; Tetali, P. On smoothed analysis in dense graphs and formulas. Random Struct. Algorithms
**2006**, 29, 180–193. [Google Scholar] [CrossRef] [Green Version] - Flaxman, A.D. Expansion and lack thereof in randomly perturbed graphs. Internet Math.
**2007**, 4, 131–147. [Google Scholar] [CrossRef] - Krivelevich, M.; Reichman, D.; Samotij, W. Smoothed analysis on connected graphs. SIAM J. Discrete Math.
**2015**, 29, 1654–1669. [Google Scholar] [CrossRef] - Addario-Berry, L.; Lei, T. The mixing time of the Newman-Watts small-world model. Adv. Appl. Probab.
**2015**, 47, 37–56. [Google Scholar] [CrossRef] - Balogh, J.; Treglown, A.; Wagner, A.Z. Tilings in randomly perturbed dense graphs. Combin. Probab. Comput.
**2019**, 28, 159–176. [Google Scholar] [CrossRef] - Krivelevich, M.; Kwan, M.; Sudakov, B. Bounded-degree spanning trees in randomly perturbed graphs. SIAM J. Discrete Math.
**2017**, 31, 155–171. [Google Scholar] [CrossRef] - Böttcher, J.; Montgomery, R.; Parczyk, O.; Person, Y. Embedding spanning bounded degree subgraphs in randomly perturbed graphs. Electron. Notes Discrete Math.
**2017**, 61, 155–161. [Google Scholar] [CrossRef] - Mohar, B. Isoperimetric numbers of graphs. J. Comb. Theory Ser. B
**1989**, 47, 274–291. [Google Scholar] [CrossRef] - Grohe, M.; Marx, D. On tree width, bramble size, and expansion. J. Comb. Theory Ser. B
**2009**, 99, 218–228. [Google Scholar] [CrossRef] [Green Version] - Seierstad, C.; Opsahl, T. For the few not the many? The effects of affirmative action on presence, prominence, and social capital of women directors in Norway. Scand. J. Manag.
**2011**, 27, 44–54. [Google Scholar] [CrossRef] - Krivelevich, M.; Nachmias, A. Coloring complete bipartite graphs from random lists. Random Struct. Algorithms
**2006**, 29, 436–449. [Google Scholar] [CrossRef] - Shang, Y. Joint probability generating function for degrees of active/passive random intersection graphs. Front. Math. China
**2012**, 7, 117–124. [Google Scholar] [CrossRef]

**Figure 1.**Vertex–isoperimetric number (panel (

**a**)) and edge–isoperimetric number (panel (

**b**)) versus $n=\left|G\right(B\left)\right|$ for subgraphs $G\left(B\right)$ (and its randomly perturbed version $G(B\cup R)$) taken from Nor-Boards.

**Figure 2.**Vertex–isoperimetric number (panel (

**a**)) and edge–isoperimetric number (panel (

**b**)) versus $n=\left|G\right(B\left)\right|$ for subgraphs $G\left(B\right)$ (and its randomly perturbed version $G(B\cup R)$) taken from ca-CondMat.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shang, Y.
Isoperimetric Numbers of Randomly Perturbed Intersection Graphs. *Symmetry* **2019**, *11*, 452.
https://doi.org/10.3390/sym11040452

**AMA Style**

Shang Y.
Isoperimetric Numbers of Randomly Perturbed Intersection Graphs. *Symmetry*. 2019; 11(4):452.
https://doi.org/10.3390/sym11040452

**Chicago/Turabian Style**

Shang, Yilun.
2019. "Isoperimetric Numbers of Randomly Perturbed Intersection Graphs" *Symmetry* 11, no. 4: 452.
https://doi.org/10.3390/sym11040452