# Hirota Difference Equation and Darboux System: Mutual Symmetry

^{1}

^{2}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Results

#### 2.1. From Ill-Posedness of the HDE to Its Symmetries

#### 2.2. Symmetries and Integrable Equations

#### 2.3. Symmetries and the Inverse Scattering Transform

## 3. Discussion

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Hirota, R. Nonlinear partial difference equations II; Discrete time Toda equations. J. Phys. Soc. Jpn.
**1977**, 43, 2074–2078. [Google Scholar] [CrossRef] - Hirota, R. Discrete analogue of a generalized Toda equation. J. Phys. Soc. Jpn.
**1981**, 50, 3785–3791. [Google Scholar] [CrossRef] - Miwa, T. On Hirota’s difference equation. Proc. Jpn. Acad. A Math. Sci.
**1982**, 58, 9–12. [Google Scholar] [CrossRef] - Zakharov, V.E.; Manakov, S.V. Construction of higher-dimensional nonlinear integrable systems and of their solutions. Funct. Anal. Appl.
**1985**, 19, 89–101. [Google Scholar] [CrossRef] - Bogdanov, L.V.; Konopelchenko, B.G. Generalized KP hierarchy: Möbius symmetry, symmetry constraints and Calogero—Moser system. Physica D
**2001**, 152–153, 85–96. [Google Scholar] [CrossRef] - Zabrodin, A.V. Hirota’s difference equations. Theor. Math. Phys.
**1997**, 113, 1347–1392. [Google Scholar] [CrossRef] [Green Version] - Zabrodin, A.V. Bäcklund transformations for the difference Hirota equation and the supersymmetric Bethe ansatz. Theor. Math. Phys.
**2008**, 155, 567–584. [Google Scholar] [CrossRef] [Green Version] - Saito, S. Octahedral structure of the Hirota–Miwa equation. J. Nonlinear Math. Phys.
**2012**, 10, 1250032. [Google Scholar] - Krichever, I.; Wiegmann, P.; Zabrodin, A. Elliptic solutions to difference non-linear equations and related many-body problems. Commun. Math. Phys.
**1998**, 193, 373–396. [Google Scholar] [CrossRef] - Hone, A.N.W.; Kouloukas, T.E.; Ward, C. On Reductions of the Hirota-Miwa Equation. Symmetry Integrab. Geom. Methods Appl.
**2017**, 13, 057. [Google Scholar] [CrossRef] - Doliwa, A.; Lin, R. Discrete KP equation with self-consistent sources. Phys. Lett. A
**2014**, 378, 1925–1931. [Google Scholar] [CrossRef] [Green Version] - Pogrebkov, A.K. Hirota difference equation: Inverse scattering transform, Darboux transformation, and solitons. Theor. Math. Phys.
**2014**, 181, 1585–1598. [Google Scholar] [CrossRef] - Pogrebkov, A.K. Hirota difference equation and a commutator identity on an associative algebra. St. Petersburg Math. J.
**2011**, 22, 473–483. [Google Scholar] [CrossRef] - Pogrebkov, A.K. Commutator identities on associative algebras. The non-Abelian Hirota difference equation and its reductions. Theor. Math. Phys.
**2016**, 187, 823–834. [Google Scholar] [CrossRef] - Pogrebkov, A.K. Symmetries of the Hirota difference equation. Symmetry Integrab. Geom. Methods Appl.
**2017**, 13, 053. [Google Scholar] [CrossRef] - Darboux, G. Lecons sur les Systèmes Orthogonaux et les Coordonnées Curvilignes; Gauthier–Villars: Paris, France, 1898. [Google Scholar]
- Eisenhart, L.P. A Treatise on the Differential Geometry of Curves and Surfaces; Kessinger Publishing LLC: Whitefish, MT, USA, 2010. [Google Scholar]
- Bianchi, L. Opere. In Sisteme Tripli Orthogonali; Edizioni Cremonese: Roma, Italy, 1956. [Google Scholar]
- Rogers, C.; Schief, W.K. BDT, Geometry and Modern Appliation in Soliton Theory; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Ferapontov, E.V. Systems of three differential equations of hydrodynamic type with hexagonal 3-web of characteristics on the solutions. Funct. Anal. Appl.
**1989**, 23, 151–153. [Google Scholar] [CrossRef] - Tsarev, S.P. The geometry of Hamiltonian systems of hydrodymanic type. The generalized hodograph method. Math. USSR-Izvestiya
**1991**, 37, 397–419. [Google Scholar] [CrossRef] - Zakharov, V.E. Description of the n-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type. I: Integration of the Lamé equations. Duke Math. J.
**1998**, 94, 103–139. [Google Scholar] [CrossRef] - Bogdanov, L.V.; Konopelchenko, B.G. Generalized integrable hierarchies and Combescure symmetry transformations. J. Phys. A Math. Gen.
**1997**, 30, 1591–1603. [Google Scholar] [CrossRef] [Green Version] - Garagash, T.I.; Pogrebkov, A.K. Scattering problem for the differential operator ∂
_{x}∂_{y}+ 1 + a(x,y)∂_{y}+ b(x,y). Theor. Math. Phys.**1995**, 102, 117–132. [Google Scholar] [CrossRef] - Pogrebkov, A.K. Higher Hirota difference equations and their reductions. Theor. Math. Phys.
**2018**, 197, 1779–1796. [Google Scholar] [CrossRef] - Kulaev, R.C.; Pogrebkov, A.K.; Shabat, A.B. Darboux system: Liouville reduction and an explicit solution. Proc. Steklov Inst. Math.
**2018**, 302, 250–269. [Google Scholar] [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pogrebkov, A.
Hirota Difference Equation and Darboux System: Mutual Symmetry. *Symmetry* **2019**, *11*, 436.
https://doi.org/10.3390/sym11030436

**AMA Style**

Pogrebkov A.
Hirota Difference Equation and Darboux System: Mutual Symmetry. *Symmetry*. 2019; 11(3):436.
https://doi.org/10.3390/sym11030436

**Chicago/Turabian Style**

Pogrebkov, Andrei.
2019. "Hirota Difference Equation and Darboux System: Mutual Symmetry" *Symmetry* 11, no. 3: 436.
https://doi.org/10.3390/sym11030436