# Single and Multi-Soliton Solutions for a Spectrally Deformed Set of Maxwell-Bloch Equations

## Abstract

**:**

## 1. Introduction

## 2. Maxwell-Bloch Equations and Spectral Deformation

## 3. Single Soliton Solution for DMB

## 4. Two-Soliton Solution

## 5. Discussion

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Belinskii, V.A.; Zakharov, V.E. Integration of Einstein equations by means of inverse scattering problem technique and construction of exact soliton solutions. Sov. Phys. JETP
**1978**, 48, 985–994. [Google Scholar] - Burtsev, S.P.; Gabitov, I. Alternative integrable equations of nonlinear optics. Phys. Rev.
**1994**, 49, 2065–2070. [Google Scholar] [CrossRef] - Nakkeeran, K. Optical solitons in Ebrium doped fibers with higher order effects and pumping. J. Phys.
**2000**, 33, 4377–4381. [Google Scholar] - Porsezian, K. Soliton models in resonant and nonresonant optical fibers. Pramana J. Phys.
**2001**, 57, 1003–1039. [Google Scholar] [CrossRef] - Porsezian, K. Optical solitons in some SIT type equations. J. Mod. Opt.
**2000**, 47, 1635–1644. [Google Scholar] [CrossRef] - Rybin, A. Application of Darboux transformations to problems with variable spectral parameters. J. Phys.
**1991**, 24, 5235–5243. [Google Scholar] [CrossRef] - Gao, J.W.; Huang, Y.H.; Tian, Y.J.; Yong, X. Darboux transformation and nonautonomous solitons for a generalized inhomogeneous hirota equation. Indian J. Phys.
**2016**, 91, 129–138. [Google Scholar] - Rajan, S.M.; Arumugam, M. Multi-soliton propagation in a generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch system with loss/gain driven by an external potential. J. Math. Phys.
**2013**, 54, 043514. [Google Scholar] [CrossRef] - Guo, R.; Tian, B.; Lv, X.; Zhang, H.Q.; Liu, W.J. Darboux Transformation and Soliton Solutions for the Generalized Coupled Variable Coefficient Nonlinear Schrödinger-Maxwell-Bloch System with Symbolic Computation. Indian J. Phys.
**2016**, 91, 129–138. [Google Scholar] [CrossRef] - Han, K.H.; Shin, H.J. Nonautonomous integrable nonlinear Schrödinger equations with generalized external potentials. J. Phys. A: Math. Theor.
**2009**, 42, 335202. [Google Scholar] [CrossRef] - Perumal, S.; Porsezian, K.; Ramanathan, G. Optical solitons in some deformed MB and NLS–MB equations. Phys. Lett.
**2006**, 348, 233–243. [Google Scholar]

**Figure 1.**E-field vs. $\zeta $ and $\eta $ for b = 0.015, k = −2 + 0.1i, ${N}_{0}$ = −60 and ${\u03f5}_{0}=0$.

**Figure 4.**Magnitude of the electric field peak vs. $\eta $ for various values of b, from b = 0.001 to b = 0.0241 with steps $\Delta $b = 0.003. All other parameters are the same with Figure 1.

**Figure 5.**Position of the peak of electric field vs. $\eta $ for various values of b, from b = 0.001 to b = 0.0241 with steps $\Delta $b = 0.003. All other parameters are the same with Figure 1.

**Figure 6.**|E|-field for the collison of two solitons between $\eta =-0.56$ and $\eta =0.46$. $-60<\zeta <60$, b = 0.2, ${k}_{1}$ = 0.1 − 0.85i, ${k}_{2}$ = 0.2 + 0.4i, ${\u03f5}_{0}$ = 0, ${N}_{0}$ = −60.

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Baran, M.K.
Single and Multi-Soliton Solutions for a Spectrally Deformed Set of Maxwell-Bloch Equations. *Symmetry* **2019**, *11*, 435.
https://doi.org/10.3390/sym11030435

**AMA Style**

Baran MK.
Single and Multi-Soliton Solutions for a Spectrally Deformed Set of Maxwell-Bloch Equations. *Symmetry*. 2019; 11(3):435.
https://doi.org/10.3390/sym11030435

**Chicago/Turabian Style**

Baran, Mehmet K.
2019. "Single and Multi-Soliton Solutions for a Spectrally Deformed Set of Maxwell-Bloch Equations" *Symmetry* 11, no. 3: 435.
https://doi.org/10.3390/sym11030435