Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions
Abstract
:1. Introduction
2. A Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Differential subordination and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Mocanu. In Differential Subordination: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225; Marcel Dekker Incorporated: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press (Ellis Horwood Limited, Chichester); John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australian; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M.J. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Spaces 2018, 2018, 8492072. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Aldweby, H.; Darus, H. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef]
- Ezeafulukwe, U.A.; Darus, M. A note on q-calculus. Fasc. Math. 2015, 55, 53–63. [Google Scholar] [CrossRef]
- Ezeafulukwe, U.A.; Darus, M. Certain properties of q-hypergeometric functions. Int. J. Math. Math. Sci. 2015, 2015, 489218. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Sharma, N.L. On a generalization of close-to-convex functions. Ann. Pol. Math. 2015, 113, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Uçar, H.E.Ö. Coefficient inequality for q-starlike functions. Appl. Math. Comput. 2016, 276, 122–126. [Google Scholar]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef] [Green Version]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Janteng, J.; Abdulhalim, S.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Mishra, A.K.; Gochhayat, P. Second Hankel determinant for a class of analytic functions defined by fractional derivative. Int. J. Math. Math. Sci. 2008, 2008, 1–10. [Google Scholar] [CrossRef]
- Singh, G.; Singh, G. On the second Hankel determinant for a new subclass of analytic functions. J. Math. Sci. Appl. 2014, 2, 1–3. [Google Scholar]
- Srivastava, H.M.; Altinkaya, Ş.; Yalçın, S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat 2018, 32, 503–516. [Google Scholar] [CrossRef]
- Babalola, K.O. On Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2007, 6, 1–7. [Google Scholar]
- Ma, W.C.; Minda, D.A. unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis (Tianjin, 1992); Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, UK, 1994; pp. 157–169. [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E.J. Early coefficient of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in . Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions. Symmetry 2019, 11, 347. https://doi.org/10.3390/sym11030347
Mahmood S, Srivastava HM, Khan N, Ahmad QZ, Khan B, Ali I. Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions. Symmetry. 2019; 11(3):347. https://doi.org/10.3390/sym11030347
Chicago/Turabian StyleMahmood, Shahid, Hari M. Srivastava, Nazar Khan, Qazi Zahoor Ahmad, Bilal Khan, and Irfan Ali. 2019. "Upper Bound of the Third Hankel Determinant for a Subclass of q-Starlike Functions" Symmetry 11, no. 3: 347. https://doi.org/10.3390/sym11030347