Multi-Attribute Decision Making Method Based on Aggregated Neutrosophic Set
Abstract
1. Introduction
2. Preliminaries
2.1. Neutrosophic Sets
2.2. SVNS
2.3. Score Function
2.4. Distance between Two Neutrosophic Sets
3. An Improved Multi-Criteria Decision Making Method
4. Illustrative Example
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, W. A correlation coefficient for belief functions. Int. J. Approx. Reason. 2018, 103, 94–106. [Google Scholar] [CrossRef]
- Deng, X.; Jiang, W.; Wang, Z. Zero-sum polymatrix games with link uncertainty: A Dempster-Shafer theory solution. Appl. Math. Comput. 2019, 340, 101–112. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect Theory. An analysis of decision making under risk. Econometrica 1979, 47, 263–291. [Google Scholar] [CrossRef]
- Han, Y.; Deng, Y. A hybrid intelligent model for Assessment of critical success factors in high risk emergency system. J. Ambient Intell. Humaniz. Comput. 2018, 9, 1933–1953. [Google Scholar] [CrossRef]
- Bellman, R.E.; Zadeh, L.A. Decision-Making in a Fuzzy Environment. Manag. Sci. 1970, 17, B141–B164. [Google Scholar] [CrossRef]
- Wendt, D.; Vlek, C. Utility, Probability, and Human Decision Making. Soc. Sci. Electron. Publ. 1977, 185, 1124–1131. [Google Scholar]
- Xiao, F. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Inf. Fusion 2019, 46, 23–32. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.; Zhu, H.; AbouRizk, S.M. Perceiving safety risk of buildings adjacent to tunneling excavation: An information fusion approach. Autom. Constr. 2017, 73, 88–101. [Google Scholar] [CrossRef]
- He, Z.; Jiang, W. An evidential Markov decision making model. Inf. Sci. 2018, 467, 357–372. [Google Scholar] [CrossRef]
- He, Z.; Jiang, W. An evidential dynamical model to predict the interference effect of categorization on decision making. Knowl.-Based Syst. 2018, 150, 139–149. [Google Scholar] [CrossRef]
- Liu, J.C.; Li, D.F. Corrections to “TOPSIS-based nonlinear-programming methodology for multi-attribute decision making with interval-valued intuitionistic fuzzy sets” [Apr 10 299-311]. IEEE Trans. Fuzzy Syst. 2018, 26, 391. [Google Scholar] [CrossRef]
- Broumi, S.; Smarandache, F. Single valued neutrosophic trapezoid linguistic aggregation operators based multi-attribute decision making. Bull. Pure Appl. Sci. Math. Stat. 2017, 33e, 135. [Google Scholar] [CrossRef]
- Deli, I.; Subas, Y. A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems. Int. J. Mach. Learn. Cybern. 2017, 8, 1309–1322. [Google Scholar] [CrossRef]
- Pramanik, S.; Dey, P.P.; Giri, B.C.; Smarandache, F. An Extended TOPSIS for Multi-Attribute Decision Making Problems with Neutrosophic Cubic Information; University of New Mexico: Albuquerque, NM, USA, 2017. [Google Scholar]
- Figueira, J.; Greco, S.; Ehrogott, M. Multiple Criteria Decision Analysis: State of the Art Surveys. International 2018, 142, 192–202. [Google Scholar]
- Siregar, D.; Arisandi, D.; Usman, A.; Irwan, D.; Rahim, R. Research of Simple Multi-Attribute Rating Technique for Decision Support. J. Phys. Conf. Ser. 2017, 930, 012015. [Google Scholar] [CrossRef]
- Deng, X.; Jiang, W. Dependence assessment in human reliability analysis using an evidential network approach extended by belief rules and uncertainty measures. Ann. Nuclear Energy 2018, 117, 183–193. [Google Scholar] [CrossRef]
- Deng, X. Analyzing the monotonicity of belief interval based uncertainty measures in belief function theory. Int. J. Intell. Syst. 2018, 33, 1869–1879. [Google Scholar] [CrossRef]
- Li, Y.; Deng, Y. Generalized Ordered Propositions Fusion Based on Belief Entropy. Int. J. Comput. Commun. Control 2018, 13, 792–807. [Google Scholar] [CrossRef]
- Deng, X.; Xiao, F.; Deng, Y. An improved distance-based total uncertainty measure in belief function theory. Appl. Intell. 2017, 46, 898–915. [Google Scholar] [CrossRef]
- Zhang, X.; Mahadevan, S. Aircraft re-routing optimization and performance assessment under uncertainty. Decis. Support Syst. 2017, 96, 67–82. [Google Scholar] [CrossRef]
- Huang, Z.; Yang, L.; Jiang, W. Uncertainty measurement with belief entropy on the interference effect in the quantum-like Bayesian Networks. Appl. Math. Comput. 2019, 347, 417–428. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, W. An improved soft likelihood function for Dempster-Shafer belief structures. Int. J. Intell. Syst. 2018, 33, 1264–1282. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Han, Y.; Deng, Y. An enhanced fuzzy evidential DEMATEL method with its application to identify critical success factors. Soft Comput. 2018, 22, 5073–5090. [Google Scholar] [CrossRef]
- Kang, B.; Deng, Y.; Hewage, K.; Sadiq, R. A method of measuring uncertainty for Z-number. IEEE Trans. Fuzzy Syst. 2018. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.; Qin, Y.; Skibniewski, M.J.; Liu, W. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage. Risk Anal. 2016, 36, 278–301. [Google Scholar] [CrossRef] [PubMed]
- Fei, L.; Wang, H.; Chen, L.; Deng, Y. A new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators. Iranian J. Fuzzy Syst. 2018. [Google Scholar] [CrossRef]
- Yager, R.R. Some Aspects of Intuitionistic Fuzzy Sets; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2009; pp. 67–90. [Google Scholar]
- Li, D.F. TOPSIS-Based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 2018, 26, 391. [Google Scholar] [CrossRef]
- Bustince, H.; Burillo, P. Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst. 1996, 79, 403–405. [Google Scholar] [CrossRef]
- Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 505–518. [Google Scholar] [CrossRef]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Xia, M.; Xu, Z. Hesitant fuzzy information aggregation in decision making. Int. J. Approx. Reason. 2011, 52, 395–407. [Google Scholar] [CrossRef]
- Zhou, W.; Xu, Z.; Chen, M. Preference Relations Based on Hesitant-Intuitionistic Fuzzy Information and Their Application in Group Decision Making; Pergamon Press, Inc.: Oxford, UK, 2015; pp. 163–175. [Google Scholar]
- Smarandache, F. A unifying field in logics: Neutrosophic logic. Multiple-Valued Logic 1999, 8, 489–503. [Google Scholar]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic; American Research Press: Ann Arbor, Michigan, USA, 1998; 105p. [Google Scholar]
- Atanassov, K.T. Interval Valued Intuitionistic Fuzzy Sets; Elsevier North-Holland, Inc.: Amsterdam, The Netherlands, 1989; pp. 343–349. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.; Sunderraman, R. Single valued neutrosophic sets. In Proceedings of the 8th Joint Conference on Information Sciences, Salt Lake, UT, USA, 21–26 July 2005; pp. 94–97. [Google Scholar]
- Ma, Y.X.; Wang, J.Q.; Wang, J.; Wu, X.H. An interval neutrosophic linguistic multi-criteria group decision-making method and its application in selecting medical treatment options. Neural Comput. Appl. 2017, 28, 2745–2765. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, H.D. New Neutrosophic Approach to Image Segmentation; Elsevier Science Inc.: Amsterdam, The Netherlands, 2009; pp. 587–595. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar]
- Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
- Ye, J. Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math. Model. 2014, 38, 1170–1175. [Google Scholar] [CrossRef]
- Xiao, F. A novel multi-criteria decision making method for assessing health-care waste treatment technologies based on D numbers. Eng. Appl. Artif. Intell. 2018, 71, 216–225. [Google Scholar] [CrossRef]
- Deng, X.; Jiang, W. D number theory based game-theoretic framework in adversarial decision making under a fuzzy environment. Int. J. Approx. Reason. 2019, 106, 194–213. [Google Scholar] [CrossRef]
- Jiang, W.; Zhong, Y.; Deng, X. A Neutrosophic Set Based Fault Diagnosis Method Based on Multi-Stage Fault Template Data. Symmetry 2018, 10, 346. [Google Scholar] [CrossRef]
- Zhou, D.; Al-Durra, A.; Zhang, K.; Ravey, A.; Gao, F. Online remaining useful lifetime prediction of proton exchange membrane fuel cells using a novel robust methodology. J. Power Sources 2018, 399, 314–328. [Google Scholar] [CrossRef]
- Şahin, R.; Yiğider, M. A multi-criteria neutrosophic group decision making metod based TOPSIS for supplier selection. arXiv, 2014; arXiv:1412.5077. [Google Scholar]
- Peng, J.J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 2016, 27, 615–627. [Google Scholar] [CrossRef]
- Jiang, W.; Shou, Y. A novel single-valued neutrosophic set similarity measure and its application in multicriteria decision-making. Symmetry 2017, 9, 127. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, H.; Wang, J.; Wang, J.; Chen, X. Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 2015, 47, 3598–3608. [Google Scholar] [CrossRef]
- Deli, I.; Ali, M.; Smarandache, F. Bipolar neutrosophic sets and their application based on multi-criteria decision making problems. In Proceedings of the 2015 International Conference on Advanced Mechatronic Systems, Beijing, China, 22–24 August 2015; pp. 249–254. [Google Scholar]
- Elhassouny, A.; Smarandache, F. Neutrosophic-simplified-TOPSIS multi-criteria decision-making using combined simplified-TOPSIS method and neutrosophics. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016; pp. 2468–2474. [Google Scholar]
- Chai, Q.Z.; Li, P.; Di, R.; Zhang, Y.W. TOPSIS method based on single-valued neutrosophic set. J. Jiangsu Univ. Sci. Technol. (Nat. Sci. Ed.) 2018, 32, 262–265. (In Chinese) [Google Scholar]
- Pramanik, S.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 2016, 27, 727–737. [Google Scholar]
0.216 | 0.205 | 0.150 | 0.056 | 0.174 | 0.216 | |
0.019 | 0.078 | 0.019 | 0.095 | 0.004 | -0.040 | |
0.231 | 0.237 | 0.185 | 0.106 | 0.171 | 0.203 | |
0.019 | 0.092 | 0.119 | 0.078 | 0.145 | 0.163 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Zhang, Z.; Deng, X. Multi-Attribute Decision Making Method Based on Aggregated Neutrosophic Set. Symmetry 2019, 11, 267. https://doi.org/10.3390/sym11020267
Jiang W, Zhang Z, Deng X. Multi-Attribute Decision Making Method Based on Aggregated Neutrosophic Set. Symmetry. 2019; 11(2):267. https://doi.org/10.3390/sym11020267
Chicago/Turabian StyleJiang, Wen, Zihan Zhang, and Xinyang Deng. 2019. "Multi-Attribute Decision Making Method Based on Aggregated Neutrosophic Set" Symmetry 11, no. 2: 267. https://doi.org/10.3390/sym11020267
APA StyleJiang, W., Zhang, Z., & Deng, X. (2019). Multi-Attribute Decision Making Method Based on Aggregated Neutrosophic Set. Symmetry, 11(2), 267. https://doi.org/10.3390/sym11020267