Deformed
N
= 8 Supersymmetric Mechanics
Abstract
:1. Introduction
- The oscillator-type Lagrangians for the bosonic fields, with as the oscillator strength.
- The appearance of the Wess–Zumino type terms for the bosonic fields, of the type .
- At the lowest energy levels, wave functions form atypical SU(2|1) multiplets, with unequal numbers of the bosonic and fermionic states and vanishing values of the Casimir operators. The energy spectrum involves an essential dependence on the deformation parameter m.
SU(2|1) Supersymmetric Mechanics
2. Two Deformations of the Standard , Poincaré Superalgebra
- (1)
- Poincaré ,
- (2)
- Poincaré .
2.1. The Superalgebra
2.2. The Superalgebra
3. The SU(2|2) Chiral Multiplet
SU(2|1) Superfield Approach
4. SU(4|1) Chiral Multiplets
4.1. The Multiplet
4.2. The Multiplet
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SQM | Supersymmetric quantum mechanics |
References
- Festuccia, G.; Seiberg, N. Rigid supersymmetric theories in curved superspace. JHEP 2011, 1106, 114. [Google Scholar] [CrossRef]
- Pestun, V. Localization of gauge theory on a four-sphere and supersymmetric Wilson loops. Commun. Math. Phys. 2012, 313, 71. [Google Scholar] [CrossRef]
- Römelsberger, C. Counting chiral primaries in N = 1, d = 4 superconformal field theories. Nucl. Phys. B 2006, 747, 329–353. [Google Scholar] [CrossRef]
- Assel, B.; Cassani, D.; Di Pietro, L.; Komargodski, Z.; Lorenzen, J.; Martelli, D. The Casimir Energy in Curved Space and its Supersymmetric Counterpart. JHEP 2015, 7, 043. [Google Scholar] [CrossRef]
- Bellucci, S.; Nersessian, A. (Super)oscillator on CP(N) and constant magnetic field. Phys. Rev. D 2003, 67, 065013. [Google Scholar] [CrossRef]
- Bellucci, S.; Nersessian, A. Supersymmetric Kähler oscillator in a constant magnetic field. In Proceedings of the 5th International Workshop on Supersymmetries and Quantum Symmetries (SQS’03), Dubna, Russia, 24–29 July 2003; pp. 379–384. [Google Scholar]
- Smilga, A.V. Weak supersymmetry. Phys. Lett. B 2004, 585, 173. [Google Scholar] [CrossRef]
- Ivanov, E.; Sidorov, S. Deformed supersymmetric mechanics. Class. Quant. Grav. 2014, 31, 075013. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, E.; Sidorov, S. Super Kähler oscillator from SU(2|1) superspace. J. Phys. A 2014, 47, 292002. [Google Scholar] [CrossRef]
- Ivanov, E.; Sidorov, S.; Toppan, F. Superconformal mechanics in SU(2|1) superspace. Phys. Rev. D 2015, 91, 085032. [Google Scholar] [CrossRef]
- Ivanov, E.; Sidorov, S. SU(2|1) mechanics and harmonic superspace. Class. Quant. Grav. 2016, 33, 055001. [Google Scholar] [CrossRef]
- Fedoruk, S.; Ivanov, E. Gauged spinning models with deformed supersymmetry. JHEP 2016, 1611, 103. [Google Scholar] [CrossRef]
- Fedoruk, S.; Ivanov, E.; Sidorov, S. Deformed supersymmetric quantum mechanics with spin variables. JHEP 2018, 1801, 132. [Google Scholar] [CrossRef]
- Fedoruk, S.; Ivanov, E.; Lechtenfeld, O.; Sidorov, S. Quantum SU(2|1) supersymmetric Calogero–Moser spinning systems. JHEP 2018, 1804, 043. [Google Scholar] [CrossRef]
- Ivanov, E.; Lechtenfeld, O.; Sidorov, S. SU(2|2) supersymmetric mechanics. JHEP 2016, 1611, 031. [Google Scholar] [CrossRef]
- Ivanov, E.; Lechtenfeld, O.; Sidorov, S. Deformed = 8 mechanics of (8,8,0) multiplets. JHEP 2018, 1808, 193. [Google Scholar] [CrossRef]
- Bellucci, S.; Krivonos, S.; Nersessian, A. = 8 supersymmetric mechanics on special Kähler manifolds. Phys. Lett. B 2005, 605, 181–184. [Google Scholar] [CrossRef]
- Ivanov, E.; Smilga, A.V. Symplectic sigma models in superspace. Nucl. Phys. B 2004, 694, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Diaconescu, D.-E.; Entin, R. A non-renormalization theorem for the d = 1, N = 8 vector multiplet. Phys. Rev. D 1997, 56, 8045–8052. [Google Scholar] [CrossRef]
- Bellucci, S.; Krivonos, S.; Nersessian, A.; Lechtenfeld, O. ABC of N = 8, d = 1 supermultiplets. Nucl. Phys. B 2004, 699, 226–252. [Google Scholar] [CrossRef]
- Berenstein, D.; Maldacena, J.; Nastase, H. Strings in flat space and pp waves from N = 4 super Yang–Mills. JHEP 2002, 2002, 013. [Google Scholar] [CrossRef]
- Kim, N.; Park, J.-H. Massive super Yang–Mills quantum mechanics: classification and the relation to supermembrane. Nucl. Phys. B 2006, 759, 249–282. [Google Scholar] [CrossRef]
- Motl, L.; Neitzke, A.; Sheikh-Jabbari, M.M. Heterotic plane wave matrix models and giant gluons. JHEP 2003, 306, 058. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, E.; Lechtenfeld, O.; Sidorov, S.
Deformed
Ivanov E, Lechtenfeld O, Sidorov S.
Deformed
Ivanov, Evgeny, Olaf Lechtenfeld, and Stepan Sidorov.
2019. "Deformed