# A Note on Distributions in the Second Chaos

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Distributions in the Second Chaos

**Example**

**1.**

**Example**

**2.**

**Theorem**

**1.**

**Theorem**

**2.**

**Remark**

**1.**

**Theorem**

**3.**

## 3. Proofs

**Lemma**

**1.**

**Lemma**

**2.**

**Proof.**

**Lemma**

**3.**

**Proof.**

**Proof**

**of**

**Theorem**

**1**.

**Proof**

**of**

**Theorem**

**2**.

**Proof**

**of**

**Theorem**

**3**.

**Remark**

**2.**

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Dehling, H.; Taqqu, M. The empirical process of some long-range dependent sequences with an application to U-statistics. Ann. Stat.
**1989**, 17, 1767–1783. [Google Scholar] [CrossRef] - Dehling, H.; Rooch, A.; Taqqu, M. Non-parametric change-point tests for long-range dependent data. Scand. J. Stat.
**2013**, 40, 153–173. [Google Scholar] [CrossRef] [Green Version] - Tudor, C.A. Analysis of the Rosenblatt process. ESAIM Probab. Stat.
**2008**, 12, 230–257. [Google Scholar] [CrossRef] [Green Version] - Dobrushin, R.L.; Major, P. Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete
**1979**, 50, 27–52. [Google Scholar] [CrossRef] - Maejima, M.; Tudor, C.A. Selfsimilar processes with stationary increments in the second Wiener chaos. Probab. Math. Stat.
**2012**, 32, 167–186. [Google Scholar] - Taqqu, M.S. Weak convergence to fractional Brownian motion and to the Rosenblatt process. Probab. Theory Rel. Fields
**1975**, 31, 287–302. [Google Scholar] - Taqqu, M.S. The Rosenblatt process. In Selected Works of Murray Rosenblatt; Davis, R., Lii, K.S., Politis, D., Eds.; Springer: New York, NY, USA, 2011; pp. 159–179. [Google Scholar]
- Beran, J.; Feng, Y.; Ghosh, S.; Kulik, R. Long-Memory Processes: Probabilistic Properties and Statistical Methods; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Tudor, C.A. Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach; Springer International Publishing: Manhattan, KS, USA, 2013. [Google Scholar]
- Embrechts, P.; Maejima, M. Selfsimilar Processes; Princeton Series in Applied Mathematics; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Kusuoka, S. On the absolute continuity of the law of a system of multiple Wiener integral. J. Fac. Sci. Univ. Tokyo Sect. IA Math.
**1983**, 30, 191–197. [Google Scholar] - Nourdin, I.; Nualart, D.; Poly, G. Absolute continuity and convergence of densities for random vectors on Wiener chaos. Electron. J. Probab.
**2013**, 18, 22. [Google Scholar] [CrossRef] - Nourdin, I.; Poly, G. Convergence in total variation on Wiener chaos. Stoch. Proc. Appl.
**2013**, 123, 651–674. [Google Scholar] [CrossRef] - Nualart, D. Normal approximation on a finite Wiener chaos. In Stochastic Analysis and Applications 2014. Springer Proceedings in Mathematics & Statistics; Crisan, D., Hambly, B., Zariphopoulou, T., Eds.; Springer International Publishing: Manhattan, KS, USA, 2014; Volume 100. [Google Scholar]
- Nourdin, I.; Poly, G. Convergence in law in the second Wiener/Wigner chaos. Electron. Commun. Probab.
**2012**, 17, 36. [Google Scholar] - Veillette, M.S.; Taqqu, M.S. Properties and numerical evaluation of the Rosenblatt distribution. Bernoulli
**2013**, 19, 982–1005. [Google Scholar] [CrossRef] [Green Version] - Applebaum, D. Lévy Processes and Stochastic Calculus; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Sato, K. Lévy Processes and Infinitely Divisible Distributions; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Leonenko, N.N.; Ruiz-Medina, M.D.; Taqqu, M.S. Rosenblatt distribution subordinated to Gaussian random fields with long-range dependence. Stoch. Anal. Appl.
**2017**, 35, 144–177. [Google Scholar] [CrossRef] [Green Version] - Nourdin, I.; Peccati, G. Normal Approximations Using Malliavin Calculus: From Stein’s Method to Universality; Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Janson, S. Gaussian Hilbert Spaces; Cambridge Tracts in Mathematics; Cambridge University Press: Cambridge, UK, 1997; Volume 129. [Google Scholar]
- Nualart, D. The Malliavin Calculus and Related Topics, 2nd ed.; Probability and Its Applications; Springer: Berlin, Germany, 2006. [Google Scholar]
- Simon, M.K. Probability Distributions Involving Gaussian Random Variables; Springer: New York, NY, USA, 2002. [Google Scholar]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ilmonen, P.; Viitasaari, L.
A Note on Distributions in the Second Chaos. *Symmetry* **2019**, *11*, 1487.
https://doi.org/10.3390/sym11121487

**AMA Style**

Ilmonen P, Viitasaari L.
A Note on Distributions in the Second Chaos. *Symmetry*. 2019; 11(12):1487.
https://doi.org/10.3390/sym11121487

**Chicago/Turabian Style**

Ilmonen, Pauliina, and Lauri Viitasaari.
2019. "A Note on Distributions in the Second Chaos" *Symmetry* 11, no. 12: 1487.
https://doi.org/10.3390/sym11121487