Fractional Integral Inequalities for Strongly
h
-Preinvex Functions for a kth Order Differentiable Functions
Abstract
:1. Introduction
2. Preliminaries
3. Auxiliary Result
4. Some New Bounds for Strongly -Preinvex Functions for th Order Differentiable Functions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Merentes, N.; Nikodem, K. Remarks on strongly convex functions. Aequ. Math. 2010, 80, 193–199. [Google Scholar] [CrossRef]
- Sonin, N.Y. On differentiation with arbitrary index. Mosc. Matem. Sbornik. 1869, 6, 1–38. [Google Scholar]
- Kilbas, A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Miller, K.; Ross, B. An Introduction to the Fractional Differential Equations; John Wiley and Sons Inc.: New York, NY, USA, 1993. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; Word Scientific: Singapore, 2000. [Google Scholar]
- Köse, K. Signal and Image Processing Algorithims Using Interval Convex Programming and and Sparsity. Ph.D. Thesis, Engineering and Science of Bilkent University, Cankaya, Ankara, Turkey, 2012. [Google Scholar]
- Liberti, L.S. Reformulation and Convex Relaxation Techniques for Global Optimization. Ph.D. Thesis, South Kensington Campus, London, UK, 2004. [Google Scholar]
- Paul, G.; Yao, D.D. Monotone Structure in Discrete Event Systems; Wiley Series in Probability and Statistics; Wiley-Interscience: New York, NY, USA, 1994; ISBN 978-0-471-58041-6. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Azocar, A.; Gimenez, J.; Nikodem, K.; Sanchez, J.L. On strongly midconvex functions. Opusc. Math. 2011, 31, 15–26. [Google Scholar] [CrossRef]
- Barani, A.; Ghazanfari, A.G.; Dragomir, S.S. Hermite–Hadamard inequality for functions whose derivatives absolute values are preinvex. J. Inequal. Appl. 2012, 2012, 247. [Google Scholar] [CrossRef]
- Angulo, H.; Gimenez, J.; Moros, A.M.; Nikodem, K. On strongly h-convex functions. Ann. Funct. Anal. 2011, 2, 85–91. [Google Scholar] [CrossRef]
- Dragomir, S.S. Inequalities of Hermite–Hadamard type for h-convex functions on linear spaces. Proyecciones 2015, 34, 323–341. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications. Math. Preprint Arch. 2003, 2003, 463–817. [Google Scholar]
- Dragomir, S.S.; Pecaric, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
- Mishra, S.K.; Sharma, N. On strongly generalized convex functions of higher order. Math. Inequal. Appl. 2019, 22, 111–121. [Google Scholar] [CrossRef]
- Nikodem, K.; Pales, Z. Characterizations of inner product spaces by strongly convex functions. Banach J. Math. Anal. 2011, 5, 83–87. [Google Scholar] [CrossRef]
- Noor, M.A. Hermite–Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131. [Google Scholar]
- Noor, M.A.; Noor, K.I. On strongly generalized preinvex functions. J. Inequal. Pure Appl. Math. 2005, 6, 102. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite–Hadamard inequalities for h-preinvex functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
- Polyak, B.T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 1966, 7, 72–75. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Set, E.; Celik, B. On generalizations related to the left side of Fejer’s inequality via fractional integral operator. Miskolc Math. Notes 2017, 18, 1043–1057. [Google Scholar] [CrossRef]
- Set, E.; Iscan, I.; Sarikaya, M.Z.; Ozdemir, M. On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals. Appl. Math. Comput. 2015, 259, 875–888. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, T.S.; Wang, H. Some new k-fractional integral inequalities containing multiple parameters via generalized (s,m)-preinvexity. Ital. J. Pure Appl. Math. 2018, 40, 510–527. [Google Scholar]
- Miao, L.; Yang, W.; Zhang, X. Projection on convex set and its application in testing force closure properties of robotic grasping. In Proceedings of the Intelligent Robotics and Applications—Third International Conference, ICIRA 2010, Shanghai, China, 10–12 November 2010. [Google Scholar]
- Chu, Y.-M.; Adil Khan, M.; Ali, T.; Dragomir, S.S. Inequalities for GA-fractional differentiable functions. J. Inequal. Appl. 2017, 2017, 93. [Google Scholar] [CrossRef]
- Adil Khan, M.; Chu, Y.-M.; Khan, T.U.; Khan, J. Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 2017, 15, 1414–1430. [Google Scholar]
- Adil Khan, M.; Chu, Y.-M.; Kashuri, A.; Liko, R.; Ali, G. Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, 2018, 6928130. [Google Scholar] [CrossRef]
- Song, Y.-Q.; Adil Khan, M.; Zaheer Ullah, S.; Chu, Y.-M. Integral inequalities involving strongly convex functions. J. Funct. Spaces 2018, 2018, 6595921. [Google Scholar] [CrossRef]
- Adil Khan, M.; Iqbal, A.; Suleman, M.; Chu, Y.-M. Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, 2018, 161. [Google Scholar] [CrossRef] [PubMed]
- Adil Khan, M.; Khurshid, Y.; Du, T.-S.; Chu, Y.-M. Generalization of Hermite-Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, 2018, 5357463. [Google Scholar] [CrossRef]
- Zaheer Ullah, S.; Adil Khan, M.; Chu, Y.-M. A note on generalized convex functions. J. Inequal. Appl. 2019, 2019, 291. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Safdar, F.; Chu, Y.-M. Hermite-Hadamard type inequalities for the class of convex functions on time scale. Mathematics 2019, 7, 956. [Google Scholar] [CrossRef]
- Nie, D.; Rashid, S.; Akdemir, A.O.; Baleanu, D.; Liu, J.-B. On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications. Mathematics 2019, 7, 727. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I. Inequalities pertaining fractional approach through exponentially convex functions. Fractal Fract. 2019, 3, 37. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Akdemir, A.O. Some new generalizations for exponentially s-convex functions and inequalities via fractional operators. Fractal Fract. 2019, 3, 24. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I. New Estimates for Exponentially Convex Functions via Conformable Fractional Operator. Fractal Fract. 2019, 3, 19. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I. Some generalize Riemann-Liouville fractional estimates involving functions having exponentially convexity property. Punjab. Univ. J. Math. 2019, 51, 1–15. [Google Scholar]
- Rashid, S.; Noor, M.A.; Noor, K.I. Fractional exponentially m-convex functions and inequalities. Int. J. Anal. Appl. 2019, 17, 464–478. [Google Scholar] [CrossRef]
- Rashid, S.; Abdeljawad, T.; Jarad, F.; Noor, M.A. Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications. Mathematics 2019, 7, 807. [Google Scholar] [CrossRef]
- Kalsoom, H.; Latif, M.A.; Junjua, M.-U.-D.; Hussain, S.; Shahzadi, G. Some (p,q)-Estimates of Hermite–Hadamard-type inequalities for co-ordinated Convex and Quasi-Convex Functions. Mathematics 2019, 8, 683. [Google Scholar] [CrossRef]
- Kalsoom, H.; Wu, J.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef]
- Zafar, F.; Kalsoom, H.; Hussain, N. Some inequalities of Hermite-Hadamard type for n-times differentiable (ρ,m)-geometrically convex functions. J. Nonlinear Sci. Appl. 2015, 8, 201–217. [Google Scholar] [CrossRef]
- Kalsoom, H.; Hussain, S. Some Hermite-Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions. Punjab Univ. J. Math. 2019, 2019, 65–75. [Google Scholar]
- Rashid, S.; Safdar, F.; Akdemir, A.O.; Noor, M.A.; Noor, K.I. Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler functions. J. Inequal. Appl. 2019, 2019, 299. [Google Scholar] [CrossRef]
- Shanhe, W.; Awan, M.U.; Mihai, M.V.; Noor, M.A.; Talib, S. Estimates of upper bound for a kth order differentiable functions involving Riemann–Liouville integrals via higher order strongly h-preinvex functions. J. Inequal. Appl. 2019, 2019, 229. [Google Scholar] [CrossRef]
- Craven, B.D. Duality for generalized convex fractional programs. In Generalized Convexity in Optimization and Economics; Schaible, S., Ziemba, T., Eds.; Academic Press: San Diego, CA, USA, 1981; pp. 473–489. [Google Scholar]
- Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef]
- Weir, T.; Mond, B. Preinvex functions in multi objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Mititelu, S. Invex sets. Stud. Cercet. Stiint. Univ. Bacau Ser. Mat. 1994, 46, 529–532. [Google Scholar]
- Khurshid, Y.; Adil Khan, M.; Chu, Y.-M.; Khan, Z.A. Hermite-Hadamard-Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, 2019, 3146210. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Safdar, F. Integral inequalities for generalized preinvex functions. Punjab. Univ. J. Math. 2019, 51, 77–91. [Google Scholar]
- Rashid, S.; Noor, M.A.; Noor, K.I. Some new classes of preinvex functions and inequalities. Mathematics. 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Akdemir, A.O.; Jarad, F.; Noor, M.A.; Noor, K.I. Simpson’s type integral inequalities for k-fractional integrals and their applications. AIMS. Math. 2019, 4, 1087–1100. [Google Scholar] [CrossRef]
- Deng, Y.; Kalsoom, H.; Wu, S. Some New Quantum Hermite-Hadamard Type Estimates Within a Class of Generalized (s,m)-Preinvex Functions. Symmetry 2019, 11, 1283. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Akdemir, A.O.; Noor, M.A.; Noor, K.I. Generalization of inequalities analogous to preinvex functions via extended generalized Mittag-Leffler functions. In Proceedings of the International Conference on Applied and Engineering Mathematics—Second International Conference, ICAEM 2018, Hitec Taxila, Pakistan, 27–29 August 2018. [Google Scholar]
- Karamardian, S. The nonlinear complementarity problem with applications, Part 2. J. Optim. Theory Appl. 1969, 4, 167–181. [Google Scholar] [CrossRef]
- Lin, G.H.; Fukushima, M. Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 2003, 118, 67–80. [Google Scholar] [CrossRef]
- Bynum, W.L. Weak parallelogram laws for Banach spaces. Can. Math. Bull. 1976, 19, 269–275. [Google Scholar] [CrossRef]
- Cheng, R.; Ross, W.T. Weak parallelogram laws on Banach spaces and applications to prediction. Period. Math. Hung. 2015, 71, 45–58. [Google Scholar] [CrossRef]
- Xu, H.-K. Inequalities in Banach spaces with applications. Nonlinear Anal. TMA 1991, 16, 1127–1138. [Google Scholar] [CrossRef]
- Varosanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Breckner, W.W. Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen. Publ. Inst. Math. 1978, 23, 13–20. [Google Scholar]
- Godunova, E.K.; Levin, V.I. Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. In Numerical Mathematics and Mathematical Physics; Moskov. Gos. Ped. Inst.: Moscow, Russian, 1985; pp. 138–142. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashid, S.; Latif, M.A.; Hammouch, Z.; Chu, Y.-M.
Fractional Integral Inequalities for Strongly
Rashid S, Latif MA, Hammouch Z, Chu Y-M.
Fractional Integral Inequalities for Strongly
Rashid, Saima, Muhammad Amer Latif, Zakia Hammouch, and Yu-Ming Chu.
2019. "Fractional Integral Inequalities for Strongly
Rashid, S., Latif, M. A., Hammouch, Z., & Chu, Y.-M.
(2019). Fractional Integral Inequalities for Strongly