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1. Introduction

Quantum calculus or g-calculus is a methodology applicable to the typical study of calculus
but it is mainly centered on the idea of derivation of g-analogous results excluding the use of limits.
This concept was first introduced by Euler who started his study in the earlier years of the 18th century.
It is the g-analogue of the ordinary derivative of a function, it is also known as Jackson or quantum
derivative in some branches of mathematics, especially in combinatorics, see [1]. In recent years,
the topic of g-calculus has attracted the attention of several scholars. That is why g-calculus is called a
bridge between mathematics and physics. Having numerous applications in mathematics as well as in
physics, g-calculus has emerged as an interesting and most fascinating field of research in recent years.
Many researchers have written a number of papers on quantum integrals, for more details, see [2-9].

Inequality theory plays a key role in pure and applied sciences, and also has comprehensive
applications in various areas of pure and applied mathematics.

A function h : | C R — Ris called convex on ] if the inequality

h(t¢ + (1 —1)9) < th(¢) + (1 = T)h(¥)

holds forall ¢, € I and 7 € [0, 1].
Motivated by the idea of convex function, Hermite and Hardamard [10] first introduced the
following inequality that is called Hermite-Hadamard inequality:

(B52) < o [ e < MO o

Due to its geometrical interpretation and applications, the Hermite-Hadamard inequality is
one of the finest inequalities among the inequalities of convex functions. This fundamental result of
Hermite and Hadamard has attracted many mathematicians and consequently this inequality has been
generalized and extended in different directions using novel and innovative ideas, see [11-14].
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Next, Tariboon et al. [15,16] obtained some of the most important integral inequalities of
analysis are extended to quantum calculus which is g-analogue of Hermite-Hadamard’s inequality on

finite integral.
P+ A qh(¢) + h(y)
h( 2 )Stp—qb/(ph(x)q’dqxs 1+q @

An important contribution to the subject was made by Alp et al. [17] who introduced corrected
g-Hermite-Hadamard inequality, which can be written as:

1 4 h h
(122) < 1 [ by < O -
2 =9 Jy 2

Recently, Noor et al. [18] proposed some important results on quantum Hermite-Hadamard
inequality for preinvex functions that can be written as follows:

Afunctionh : J, = [¢, ¢+ v(¢,¢)] C R — Rbeintegrable and preinvex function with v(¢, ¢) > 0.
If the bifunction v(., .) satisfies the Condition C, then, we have

2¢p +v(y, P) 1 p+o(pp) qh(¢) + h(yp)
(PR s e < TR @

Proposition 1. Let h: [, = [¢, ¢ + v(¢, ¢)] C R — R be a quantum differential mapping over 5 (interior
of Ju) with q € (0,1). If yDgh is continuous and integrable over J,. Then, the following identity holds:

¢+u(ig) :
qh(qbl)iqh(lp) - U(l;,(l)) /¢+ " h(x)pdgx = 10(¥.9) ./01 (1= (1 +q)1)y Dgh(¢ + Tv (3, ¢))odyT.

9 l4q
Liu et al. [19] proposed the following results based on twice quantum integral identity and
developed some trapezoid-type inequalities for convex function.

Proposition 2. Let h: | = [¢, ] C R — R be a twice quantum differential mapping over I°(the interior of J)
with ¢D§h being continuous and q-integrable over |, where q € (0,1). Then, the following identity holds:

h h 1 ¥ 2(p — ¢)2 1
1 (4)1)—:—51 W) _ - /<P h(x)pdgx = q(f_ﬂ;b)/o T(1— qr)q,Dgh((l —T)¢ + TYP)od,yT.

Theorem 3. Let h: | = [¢, ] C R — R be a twice quantum differential mapping over J° (the interior of ])
with yDh being continuous and g-integrable over ], where g € (0,1). If | D3h| is convex on [, ], then

_ P09 |yD3h(9)| + |pDi(y)))
T 44+ +q+ 3 +q7)

ghi) +h(y) 1 ¥
Trg g, O

Theorem 4. Let h: | = [¢, ] C R — R be a twice quantum differential mapping over J° (the interior of J)
with (/,Dgh being continuous and g-integrable over I, where q € (0,1). If |¢D§h|’ is convex on [¢, ], where
s,r>1,%+%:1,then

D2(¢)| -+ [pD2n(w)|

_ q2(¢_¢)2( " q ’(p g (<P)) + ‘</> g (IP)’
="14q M 144

1+q y—9Jp

PP) I
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where

p=(1-9) i(q'ww(l e

Theorem 5. Let h : | = [¢p, ] C R — R be a twice quantum differential mapping over I° (the interior of
J) with ¢D§h being continuous and g-integrable over I, where q € (0,1). If |¢D§h]r is convex on ¢, | for
r > 1, then

2| p2 ' 2 T\ 7
2(p— )2 [ 4 ’¢th(¢)’ + ‘¢th(¢)’
14¢)%r l+q+q>+¢°

qh(¢) + h(y) v
1+q ¢—¢/¢ HX)odx

1
(

2. Preliminaries

In this section, Suppose that A is a nonempty bounded set in R" and A° denotes the interior of A.
The generic n-dimensional vector-space will be represented by R” and Ry = [0, o0).

Ben-Israel et al. [20] defined the concept of invex set as follows, which is a generalization of
convex set:

Definition 1. Let A C R” be an invex set with respect tov : A x A — R", if

p+Tu(h,P) €A

forall ¢, € Aand T € [0,1].
Pini. R in [21] introduced the idea of invexity and generalized convexity

Definition 2. Let A C R" be an invex set with respect tov : A x A — R". Let h : A — R be called a preinvex
function if

(¢ +7o(y,¢)) < (1= T)h(p) + Th(yp)
holds for all ¢, € Aand T € [0,1].

The following definitions for generalized (s, m)-preinvex function, quantum derivative and
integral of function h are stated as:
Author J. Y. Li [22] has introduced the concept of inequality for s-preinvex function

Definition 3. Let A C Ry be an invex set with respect tov : A x A — R". A function h : A — R is called
s-preinvex function if

(¢ +7o(y,¢)) < (1 =7)°h(9) + Th(p)
holds for all ¢, € A, T € [0,1] and for some fixed s € (0,1].

Ting-Song Du et al. [23] first established the idea of m-invex set and generalized (s, m)-preinvex
functions as follows:

Definition 4. Let A C R” be m-invex set with respect to the function v : A x A x (0,1] — R" for some fixed
m e (0,1], if
m¢ + tu(p, o, m) € A

holds for each ¢, € A and any T € [0,1].
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Example 1. Consider A = [—3, 2] U [—1,2] and

p-mp, if 2>¢>-12>¢> -1
Yp—mp, f-3<p<-2,-3<yp< -2
~1-mp, f-3<p<-2,-1<¢p<2;
B—mp, f—1<¢p<2,-3<yp<-2.

(W, ¢,m) =

Clearly, A is an invex set with respect to v but not a convex set.

Remark 1. Definition 4 shows that the m-invex set v(, ¢, m) degenerates to an invex set v(, ¢), if we take
m =1

We introduce the new concept of generalized m-preinvex and (s, m)-preinvex functions

Definition 5. Let h : A = R, h is said to be a generalized m-preinvex with respect to function v : A X A x
(0,1] — R" for some fixed m € (0,1], if

h(me + to(y, ¢,m)) < (1= )h(mg) + th(y)
holds for all ¢, € Aand T € [0,1].

Definition 6. Let h : A — R, h is said to be a generalized (s, m)-preinvex with respect to function v :
A x A x (0,1] — R" for some fixed s,m € (0,1] if

h(gm + to(y, ¢, m)) < (1= 7)°h(mp) + Th(yp)
holds forall ,p € A, T € [0,1].

Remark 2. If we take v(y, ¢, m) =  — m¢ in Definition 6, then the generalized (s, m)-preinvex function
could reduce to (s, m)-convex function.

Example 2. Let h(¢p) = — | ¢ |, s = 1and

p—mp, if ¢$=0,4=0;
p—me, if ¢<0,p<0
mp—y¢, if ¢$=>0,¢ <0
mo—¢, if ¢$<0,p=>0.

v(yp, ¢, m) =

Then, h(¢) is a generalized (1, m)-preinvex function with respectto v : R x R x (0,1] — R and
for some fixed m € (0,1].

Note: If we take m = 1 in Example 1 and Example 2, then v(¢, ¢, 1) could reduce to v(¢p, ¢).

In [24], Mohan et al. introduced the concept of well-known Condition C, rewritten as follows:

Definition 7. Let A C R be an invex set with respect to bifunction v(.,.). Then, for any ¢,y € A and
T€[0,1],

v, +To(¢,9)) = —T0(, ),
v(p, 9 +To(¢,¢)) = (1= T)v($, §).
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The idea of preinvex function is more generalized than convex function because every convex function
is preinvex with respect to the property v(y, ¢) = 1 — ¢, but converse is not true.

We recall some previously known concepts on g-calculus which will be used in this paper.
Tariboon et al. [16] proposed the concept of quantum derivative and integration over finite interval

(9, 9]

Definition 8. Consider a continuous function h : (¢, | — R, then, the quantum derivative of function h at
T € [¢, ] with q € (0,1) is written as

¢th(T) _ h(7) (_1}1_(‘175("; (_14)_) q)‘P), T 4 ¢. (5)

Since &1 : [¢, ] — R is a continuous function, we thus have 3D h(¢) = lin}) (¢Dgh(7)).
T—

If we take ¢ = 0 in (5), then ¢Dyh = Dyh, where Dgh is a familiar quantum derivative of (1)
defined by
h(t) — h(gT
Dyie) = MO~
Definition 9. Consider a continuous function h : [¢, ] — R. We introduce the concept of 2nd-order quantum
derivative on interval [, ¢]. In quantum calculus, the 2nd-order quantum derivative, denoted as ¢D§h,
is defined as ¢D§h =, Dq(,Dgh) : [¢, 9] — R. Similarly, we define ,Dy : [, ¢] — R, which is called a
higher-order quantum derivative on [¢, ] with g € (0,1).

Example 3. Define a function h : [¢, ] — R by h(t) = %> + 1 with q € (0,1). Then, for T # ¢ we have

202 r+1— qr+(1—q>¢)2+1)

‘PDq(T —|‘1 ( )(T—(P) )
1+q) 72 —24>Tq (1+q)¢?

D”’( — ) )

» Dg ((1+q)T+(1*q)¢)
(1 NDTt+1-g)¢—(1+9) gr+1A—q)¢)+(1—9)¢)
1-q9)(t—9)

=1+g.

Definition 10. Consider a continuous function h : [¢,p] — R. The quantum integral on [¢p, ] withq € (0,1)
is stated as

| Moty = (=)= ) L "hla" T+ (1= a")9), ©

for Tt € (¢, ).

Example 4. Define function h : [¢,p] — Rby h(x) = 4x + 1 with g € (0,1) . Then, we have
T
/ (4x +1) pdgx
¢

=(1-q9)(r—9¢) <4iq”(q”’r+(1—q”>¢)+ iq>

n=0 n=0

(T—¢) [4(t +4q¢) + (1 +9)]
144 '
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Note that if we take ¢ = 01in (6), then we obtain the concept of classical quantum integral as

[ Houdyx = (107 X ghGa™),

for T € [0, ).
If c € (¢, T), then the definite quantum integral on [¢, ] is expressed as

/C h(x)pdgx = /4) h(x)pdgx —/(P h(x)pdgx.
Lemma 1. Let 6 € R\{—1}, then
T 1—
/4> (x — (,b)g) dgx = (1_17;11) (T— (p)5+1 .

Theorem 6. Consider continuous functions hy, hy : [¢, ] — R, where « € R. Then, for T € [p, ], with
7€(0,1),

/4, () +ha())pdex = /4> "y (%) pidgx + /4> " (%) oy,
[ @neggr = a [ (g

In addition, we introduce the quantum analogues of ¢, (x — ¢)" and the definition of the quantum
Beta function, see [25].

Definition 11. Forany o € R,

1 A0
o] =1
1—gq
is called the quantum analogues of 0.
In particular, for n € 7%, we denote
1—g"
[n] = 17’7(1 ="+l

Definition 12. If n is an integer, the quantum analogue of (x — )" is the polynomial

G {<x—a><x—qo>...<x—q“ff>f fon2t

Definition 13. Foranyr,T > 0,

1
Bq(r,7) = /O X1 = qx)f  odgx
is called the quantum Beta function.

Note that

1 1
:Bq(rrl) = /0 xrilodqx = m,



Symmetry 2019, 11, 1283 7 of 15

where [r] is the quantum analogue of 7.

3. Main Results

In this section, we introduce new quantum Hermite-Hadamard-type estimates within a class
of generalized m-preinvex functions. Furthermore, we derive identity for twice g-differentiable
function. By the help of this identity, we will prove our main results, these results are generalizations
of the results proved by Liu et al. in [19]. Before that, for simplicity of the notations, we take
Jo = [m¢p, mep + v(, ¢, m)] C R, mp < m¢p + v(y,p, m) as the interval and ] as the interior of J,,.

Theorem 7. Let h : ], C R — R be an integrable and generalized m-preinvex function with v(y, ¢, m) > 0,
for somem € (0,1] and g € (0,1). If v(.,.) satisfies condition C, we have

2me + v(y, p,m) 1 mg-+u(y,p,m) qgh(me) + h(y)
' < 2 ) = v(y, ¢, m) /th h(2)mpdgz < T

Proof. Let /1 be a generalized m-preinvex function over v(.,.) and let condition C hold, then

i (G < D g+ ol m) +Wong+ (L= Dol o)), )

applying quantum integral identity in Equation (7) over 7 on [0, 1], we get the following integral

gty S gy

u <2m<p+v(¢,¢,m)> < 1 ( U(l,l)ip,m) f:f*v(¢'4’fm)h(z)m¢dqz )
2 -2
u(pp,m)

1 m+v(Ypm)

:7"1(/)

(W, ¢, m) .
Since h is generalized m-preinvex function, then T € [0, 1]. Therefore,
h(mg + tu(yp, ¢, m)) < (1= T)h(me) + Th(y), ®)

again applying quantum integral identity in (8) over T on [0, 1] and using Definition 10, we have

m-+o(ip,¢,m)
L otz < 1) AP o

v(y, ¢, m) Jmg 1+gq

Thus, our required result can be obtained by combining Equations (7) and (9). O

Remark 3. Under these conditions, the new inequalities recapture well-known previous inequalities.
1. Ifm=1,v(y,¢,1)=1¢—¢andg — 1, then Theorem 7 reduces to inequality (1).

2. Ifm=1andv(¢,¢,1) =9 — ¢, then Theorem 7 reduces to inequality (3).

3. Ifg— 1" and m = 1, then Theorem 7 reduces to inequality (4).

Lemma2. Leth: J, C R — R be a twice quantum differentiable function on | with m¢Df’h being continuous
and integrable on ], with q € (0,1) and for some m € (0,1]. Then, the following identity holds:

gh(me) + h(mp +v(p,¢,m)) 1 mip-+o(y.gm)
T+q v(y, ¢, m) /mq; 1(2)mpdqz
g (g, ¢, m)

1
B ﬁ/o (1~ qT)mpDih(me + Tv(y, ¢, m))odyT.
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Proof. Utilizing Definition 8 and Definition 9, we get

ngpDgh(me + oy, ¢, m))

=me Dq (m¢th(m¢ + TU(lPI 4)/ Wl)))

. (Mm¢+mvw»¢nw»—Mm¢+qnmw¢nm>)
" (1 —q)u(y, ¢, m)

B+ o(pm) —h(mp-+qTo(p.g,m))
1 (T=q)e(p.pm)

T =)o, @) | gt grolpapm) —h(mgsro(ppm)
()0 pm)

qh(m¢ + to(yp, ¢, m))

1
©2q(1=q)?0* (¢, ¢,m) | —(1+q)h(mp+q7o(yp, ¢, m))

+h(me + g*To(ip, ¢, m)

Applying this expression and Definition 10, we have

1
/0 T(1 = qT)mp D2 (mp + To(, §, m))ody T

S S h(mp + o(, 9, m)odyT

1

= 91— q)202(y, ¢, m) —(144q) fol @h(mq) +qTo(, ¢, m))odyT

+ o =D h(mg + oy, ¢, m)odgT

q(1—q) Ty h(me + q"o(y, ¢, m))

= 0= )22 (p, ¢, m) —(1+q)(1—q) Lo h(md + " oy, ¢,m))

+(1—q) Zoo h(me + " 2u(yp, ¢, m))

A=) v(§.p,m) Yo g"h(mp-+4"v(p,p,m))
q

_ (4q)(A=q)v(y,¢,m) Zfzog”“h(mzpw”“v(zp,¢,m))

(19253 (y,¢,m) ;

| A=)o(ppm) T q”fh(qu””v(w,@m))
q
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Yo (m¢ +q"v(p, p,m))

) — Lo h(mg + q" oy, ¢,m))
q(1 = )02 (i, ¢, m)

— Yoo h(mp 4+ g o(yp, ¢, m))

+ Lo h(mg + g 2o (v, o, m))

I ") h(zmpdyz

(14 ) [ 0™ h(z) pdyz

T+ )1 = q)o(y, ¢, m)h(me +v(yp, ,m))

_ q
(1= q)*0*(, ¢, m)

I ™ 1z gz

| == el ¢ mn(ng + o, ¢,m)

—(1—q)o(y, ¢, m)qh(me + qv(y, p,m))

1 9(h(m¢ + 0y, ¢,m)) = h(mg))
q(1=q)v* (y,¢,m) —h(m¢ + qu(y, ¢, m) + h(Tf_iqD)

_ (4q) fm(p+v ,¢,m)

= TR (pgm) h(2)modyz

2+ -1
g 19+ 00,9, m)

| ahmgtav(pgm)
- - P> (1=q)v2 (p,m) . _
qgh(me) + h(me + v(y, ,m)) 144 mp-+v(ppm)
- - h(z)medsz.
7> (y, ¢, m) P23 (y, ¢, m) /m¢ (2)mgdly

Multiplying both sides with ,721;21(+,‘;p,m), we complete the proof. [J

Remark 4. If we substitute m = 1 and v(, $,1) = ¢ — ¢ in Lemma 2, then it reduces to Proposition 2.
Theorem 8. Let h : ], C R — R be a twice quantum differentiable function on ] with mq,D%h being

continuous and q-integrable over ], with q € (0,1). If ‘m(ngh‘ is a generalized (s, m)-preinvex function on
[m¢p, m¢p + v(y, ¢, m)] for some fixed s,m € (0,1], then the following inequalities hold:

qh(me) + h(me +v(y, p,m)) 1 m-+v(ip,g,m)
‘ I+q G h{@)modsz
< w (@1 ‘zsth(md))’ + @» ’mq)Dgh(lp) ) , (10)
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where
@ =01-q) Y@ -g"H-q"),
n=0
@ == ) " -g".
n=0
Proof. Using Lemma 2 and the generalized (s, m)-preinvex of ‘ , we have
m+v(ip,p,m)
ahng) o otpp) L K&l
144 (i, ¢, m) Jmg

< PO, ¢m)

1
< T /0T(l—QT)‘m¢D§h(m¢+Tv(¢,<p,m))‘Oqu

1 S
< 7Y, ¢, m) ‘m"’Dgh(m(P)‘ Jo T =qT)(1 = T)3d,T
=TTy
! + ’WD%}Z(WP +u(y, 4’/7”))’ J3 T — qT)odgT

Now, we calculate the above quantum integral by applying Definition 10, then we get

1 o0
@ :/ (1 - qo)(1 - 1)dgr = (1— ) ¥ (2" — 1) (1 — "),
0 n=0
1
@2 :/ (1 —gT)odgT = (1—¢ an<s+2 _ g,
0

Hence, the proof is complete. [J

Corollary 1. Let h : J, C R — R be a twice quantum differentiable function on JO with yyD?h being
continuous and integrable over Jy. If |upD?h| is a generalized (s, m)-preinvex function on [m¢, m¢ +
v(y, ¢, m)] for some fixed s,m € (0,1], then the following inequalities hold:

h(mg) +h(m¢ +v(p, ¢, m)) 1 me+v(,,m) Nz

| 2 SE 5 g He)d
o2(g,¢,m) (1" (me)| + " ()])

- 2(s+2)(s+3) '

Proof. We substitute § — 17 in Theorem 8. Then, the quantum integral reduces to a classical
integral and

1 1
s+1d —
/0 g T G+2)(+3)
! s+1 1
/oT — ot (s +2)(s+3)

O

Remark 5. Substitutingm =1 =s, v(y, $,1) = ¢ — ¢ and by using Definition 10 in Theorem 8, we obtain
Theorem 3.
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Theorem 9. Let h : [, C R — R be a twice quantum differentiable function on | with mq,D%h being
continuous and q-integrable on |, with q € (0,1). If ’m([,Dgh’r is a generalized (s, m)-preinvex on [m¢, m¢ +
v(, ¢, m)| for some fixed s,m € (0,1], where p,r > 1, % + % =1, then

qh(mp) +h(mp +v(yp,p,m)) 1 mg-+u(yp,m)
1+gq v(ip, ¢, m) /m¢ 1(2)mgdgz
P, p,m) 1 r N
< T 007 (02w Dih(ng)| -+ 63 |ugDiOme + vy, 0m)[) ", A
where
T
n=0
6 =(1-9q) ;q”(l —q")s,
and
1
%= 71

[s + 1] is g-analogue of s + 1.
Proof. Using Lemma 2, application of Holder inequality, and the generalized (s, m)-preinvex of

r
‘mlngh , we have

) ol p) L

1+¢ (g, om) Jmg

2,2 1 5/l , L
< W </0 ﬂ(l—qr)é’%r) (/o ’m¢D§h(m¢+Tv(1/J,<p,m))‘ odqr>

1 " D2h " _1)5ad %
< PEGM) (or1 o) oD 10 —2odye )"
Tq 0 +’m¢th(m<p+v(lp,¢,m))' Jo ToodyT

Applying Definition 10, we get

1 =
o = [ T =(1—g) LA -,
n=0
1 [ee]
b = [ (1=1)pdyr=(1-q) ) q"(1—-q")",
n=0
1 1—9q 1
S —
= [ = 71 5+

Hence, the proof is complete. [J
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Corollary 2. Let h : J, C R — R be a twice quantum differentiable function on JQ with uyD>h being
continuous and integrable over [,. If ‘m¢D2h| is a generalized (s, m)-preinvex function on [m¢, m¢p +
v(4, ¢, m)] for some fixed s,m € (0,1], where p,r > 1, % + 1 =1, then the following inequalities hold:

h(m¢) + h(m¢ + v(p, ¢, m)) 1 mp+v(p,p,m)

’ ) - o9, ¢, m) /m¢ h(z)dz
2 L (1 )|+ )|

< M) g 1, p 4 1)) JH | ,

_Pem (T(p+1) P )|+ | @)\

- 8 F(g +p) s+1

Proof. We substitute g4 — 17 in Theorem 9. Then, the quantum integral reduces to a classical
integral and

1
/T’”(l—'r)”dr =B(p+1,p+1),
0
1 1

— S —

/0(1 T)%dt o

1
/TSdT = 1 .
0 s+1

Applying the properties of Beta function, that is,

B9, 9) =2 B(5,0),

_T@r()
we obtain
B(p+1,p+1) =2172r+lg (1 p+1)
- DIy + J
T (3+p)
where I'(}) = \/ and T'(7) is a Gamma function:
_ « -1,—x
F(T)—/O Xt e dx, T>0.

O

Corollary 3. Ifp € Z",p > 1, then
14
(1=q7)P < (1 —=q7)q-
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Under the above condition, Theorem 9 reduces to

gh(me) + h(m¢ + v(y, ¢, m)) 1 m+v(,p,m)

I+q ~ G b h(@)mgdyz
< PO, gm) (By(p+1p+1))7 ]
C L < (@ weDinng)|[ + 6 gD+ vy, m))[[)

Remark 6. Ifwetakem =1 =s,v(¢, ¢, 1) = ¢ — ¢ and by using Definition 10 in Theorem 9, then we obtain
Theorem 4.

Theorem 10. Let h : J, C R — R be a twice quantum differentiable function on ]9 with m¢D§h being
r

continuous and q-integrable on J, with q € (0,1). If ‘WPD,%h) is generalized (s, m)-preinvex on [m¢, m¢p +

v(y, ¢, m)] for some fixed s, m € (0,1], where r > 1, then

qh(m¢) + h(me + v(yp, p,m)) 1 mp+v(p,,m)
T+ =G h(@)mpdoz
2,2 1 r r %
< LB ()13 (g2 oD3hn) |+ g5 g DihOmg +v(ggm)[[) (12
q
where

B 1

T CE T Er ok

g2 =(1—q) Y (1—g")@" - "),

n=0
3 2 q S+2 n+1)

Proof. Using Lemma 2, application of power mean inequality, and the generalized (s, m)-preinvex of

‘ r, we have
qh(m¢) + h(me + v(y, p, m)) 1 m+v(ip,g,m)
‘ 149 _wwﬁm/j h(@)mgdyz

1

2,2 1 =rp ' '
< W </o T(l—modﬂ) </0 =4 ’"@Déh((’”"’”U(l’b’(”’m»)‘odﬂ>

1 mpD2h( T(1—7)5(1 — g1)od ’
< (g, ¢, m) </1 (1 - qr)odqr> ’ 9pDyh(me) ‘ fo 7)*(1 = qT)odqT .
1+gq 0 + ’m¢D2h me + v(y, p,m) ’ J3 T — qT)odgT

Applying Definition 10, we can easily calculate as

1 1
= 1— d = ,
=TT =
1 %)
¢ = / (1= 1)°(1 = q1)odyT = (1 —q) Z (1—q") (g™ — "),
?3 _/ 1—qTOdT— 1_ Zq S+2 71+l)

The proof is completed. [
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Corollary 4. Let h : [, C R — R be a twice quantum differentiable function on JQ with yuyD>h being
continuous and integrable over J,. If | np D?h| is generalized (s, m)-preinvex function on [me, mep + v(ip, ¢, m)]
for some fixed s,m € (0,1], where r > 1, then the following inequalities hold:

h(m@) +h(m¢p +v(p,p,m)) 1 /m4>+v(tp,¢,m)

2 o(,@,m) Jmp hlz)dz

’ r

2w, 6m) (AN |1 )|+ W ()
= (¢24> )Q) | (s+’2)(s’+3)

Proof. We substitute § — 1~ in Theorem 10. Then, the quantum integral reduces to a classical
integral and

1 1
/0 T(1—T1)dt =z
/1 (1 —-7)ldr S S
0 ~ (s+2)(s+3)’
1 s B 1
fera-nd = s

O

Remark 7. Ifwe take m =1 = s, v(y,$,1) = 1 — ¢ and by using Definition 10 in Theorem 10, then we
obtain Theorem 5.

4. Conclusions

Quantum calculus has large applications in many mathematical areas such as number theory,
special functions, quantum mechanics, and mathematical inequalities. In this paper, we first establish a
new quantum integral identity and then develop some quantum estimates of Hermite-Hadamard-type
inequalities for generalized (s, m)-preinvex functions. These results in some special cases recapture the
known results. We hope that our results may be helpful for further study.
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