# The Erez–Rosen Solution Versus the Hartle–Thorne Solution

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. The Erez–Rosen Metric

## 3. The Linearized Erez–Rosen Solution in Terms of the Zipoy–Voorhees Parameter

## 4. The Exterior Hartle–Thorne Solution

## 5. Coordinate Transformations

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Boshkayev, K.; Quevedo, H.; Ruffini, R. Gravitational field of compact objects in general relativity. Phys. Rev. D
**2012**, 86, 064043. [Google Scholar] [CrossRef] - Erez, G.; Rosen, N. The gravitational field of a particle possessing a quadripole moment. Bull. Res. Counc. Israel
**1959**, 8, 47. [Google Scholar] - Hartle, J.B. Slowly rotating relativistic stars. I. Equations of structure. Astrophys. J.
**1967**, 150, 1005. [Google Scholar] [CrossRef] - Hartle, J.B.; Thorne, K.S. Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars. Astrophys. J.
**1968**, 153, 807. [Google Scholar] [CrossRef] - Weyl, H. Zur gravitationstheorie. Annalen der Physik
**1917**, 359, 117–145. [Google Scholar] [CrossRef] - Doroshkevich, A.G.; Zel’Dovich, Y.B.; Novikov, I.D. Gravitational collapse of nonsymmetric and rotating masses. Sov. J. Exp. Theor. Phys.
**1966**, 22, 122. [Google Scholar] - Winicour, J.; Janis, A.I.; Newman, E.T. Static, axially symmetric point horizons. Phys. Rev.
**1968**, 176, 1507–1513. [Google Scholar] [CrossRef] - Young, J.H.; Coulter, C.A. Exact metric for a nonrotating mass with a quadrupole moment. Phys. Rev.
**1969**, 184, 1313–1315. [Google Scholar] [CrossRef] - Zeldovich, Y.B.; Novikov, I.D. Relativistic Astrophysics. Volume 1: Stars and Relativity; University of Chicago Press: Chicago, IL, USA, 1971. [Google Scholar]
- Quevedo, H.; Parkes, L. Geodesies in the Erez-Rosen space-time. Gen. Relativ. Gravit.
**1989**, 21, 1047–1072. [Google Scholar] [CrossRef] - Quevedo, H. General static axisymmetric solution of Einstein’s vacuum field equations in prolate spheroidal coordinates. Phys. Rev. D
**1989**, 39, 2904–2911. [Google Scholar] [CrossRef] - Quevedo, H. Multipole moments in general relativity static and stationary vacuum Solutions. Fortschritte der Physik
**1990**, 38, 733–840. [Google Scholar] [CrossRef] - Quevedo, H.; Mashhoon, B. Exterior gravitational field of a rotating deformed mass. Phys. Lett. A
**1985**, 109, 13–18. [Google Scholar] [CrossRef] - Quevedo, H.; Mashhoon, B. Exterior gravitational field of a charged rotating mass with arbitrary quadrupole moment. Phys. Lett. A
**1990**, 148, 149–153. [Google Scholar] [CrossRef] - Lewis, T. Some Special Solutions of the Equations of Axially Symmetric Gravitational Fields. Proc. R. Soc. Lon. Ser. A
**1932**, 136, 176–192. [Google Scholar] [CrossRef] - Papapetrou, A. Eine rotationssymmetrische Lösung in der allgemeinen Relativitätstheorie. Annalen der Physik
**1953**, 447, 309–315. [Google Scholar] [CrossRef] - Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett.
**1963**, 11, 237–238. [Google Scholar] [CrossRef] - Bini, D.; Geralico, A.; Luongo, O.; Quevedo, H. Generalized Kerr spacetime with an arbitrary mass quadrupole moment: geometric properties versus particle motion. Class. Quantum Gravity
**2009**, 26, 225006. [Google Scholar] [CrossRef] - Stergioulas, N. Rotating stars in relativity. Living Rev. Relativ.
**2003**, 6, 3. [Google Scholar] [CrossRef] - Boshkayev, K.; Rueda, J.A.; Ruffini, R.; Siutsou, I. On general relativistic uniformly rotating white dwarfs. Astrophys. J.
**2013**, 762, 117. [Google Scholar] [CrossRef] - Belvedere, R.; Boshkayev, K.; Rueda, J.A.; Ruffini, R. Uniformly rotating neutron stars in the global and local charge neutrality cases. Nuclear Phys. A
**2014**, 921, 33–59. [Google Scholar] [CrossRef] [Green Version] - Weber, F.; Glendenning, N.K. Application of the improved Hartle method for the construction of general relativistic rotating neutron star models. Astrophys. J.
**1992**, 390, 541–549. [Google Scholar] [CrossRef] - Urbanec, M.; Miller, J.C.; Stuchlík, Z. Quadrupole moments of rotating neutron stars and strange stars. Mon. Not. Roy. Astr. Soc.
**2013**, 433, 1903–1909. [Google Scholar] [CrossRef] [Green Version] - Yagi, K.; Kyutoku, K.; Pappas, G.; Yunes, N.; Apostolatos, T.A. Effective no-hair relations for neutron stars and quark stars: Relativistic results. Phys. Rev. D
**2014**, 89, 124013. [Google Scholar] [CrossRef] - Mashhoon, B.; Theiss, D.S. Relativistic lunar theory. Nuovo Cimento B Serie
**1991**, 106, 545–571. [Google Scholar] [CrossRef] - Quevedo, H.; Toktarbay, S.; Aimuratov, Y. Quadrupolar gravitational fields described by the q-metric. arXiv
**2013**, arXiv:1310.5339. [Google Scholar] - Quevedo, H. Multipolar solutions. arXiv
**2012**, arXiv:1201.1608. [Google Scholar] - Zipoy, D.M. Topology of some spheroidal metrics. J. Math. Phys.
**1966**, 7, 1137–1143. [Google Scholar] [CrossRef] - Voorhees, B.H. Static axially symmetric gravitational fields. Phys. Rev. D
**1970**, 2, 2119–2122. [Google Scholar] [CrossRef] - Geroch, R. Multipole moments. I. Flat space. J. Math. Phys.
**1970**, 11, 1955–1961. [Google Scholar] [CrossRef] - Hansen, R.O. Multipole moments of stationary space-times. J. Math. Phys.
**1974**, 15, 46–52. [Google Scholar] [CrossRef] - Ernst, F.J. New formulation of the axially symmetric gravitational field problem. Phys. Rev.
**1968**, 167, 1175–1177. [Google Scholar] [CrossRef] - Frutos-Alfaro, F.; Quevedo, H.; Sanchez, P.A. Comparison of vacuum static quadrupolar metrics. R. Soc. Open Sci.
**2018**, 5, 170826. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Frutos-Alfaro, F.; Soffel, M. On relativistic multipole moments of stationary space-times. R. Soc. Open Sci.
**2018**, 5, 180640. [Google Scholar] [CrossRef] [PubMed] - Bini, D.; Boshkayev, K.; Ruffini, R.; Siutsou, I. Equatorial Circular Geodesics in the Hartle-Thorne Spacetime. il Nuovo Cimento C
**2013**, 36, 31. [Google Scholar] - Frutos-Alfaro, F.; Soffel, M. On the post-linear quadrupole-quadrupole metric. Rev. Mat. Teor. Apl.
**2017**, 24, 239. [Google Scholar] [CrossRef] - Boshkayev, K.A.; Quevedo, H.; Abutalip, M.S.; Kalymova, Z.A.; Suleymanova, S.S. Geodesics in the field of a rotating deformed gravitational source. Int. J. Mod. Phys. A
**2016**, 31, 1641006. [Google Scholar] [CrossRef] [Green Version] - Boshkayev, K.; Gasperín, E.; Gutiérrez-Piñeres, A.C.; Quevedo, H.; Toktarbay, S. Motion of test particles in the field of a naked singularity. Phys. Rev. D
**2016**, 93, 024024. [Google Scholar] [CrossRef] [Green Version] - Allahyari, A.; Firouzjahi, H.; Mashhoon, B. Quasinormal modes of a black hole with quadrupole moment. Phys. Rev. D
**2019**, 99, 044005. [Google Scholar] [CrossRef] [Green Version] - Allahyari, A.; Firouzjahi, H.; Mashhoon, B. Quasinormal modes of generalized black holes: Delta-Kerr spacetime. arXiv
**2019**, arXiv:1908.10813. [Google Scholar]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Boshkayev, K.; Quevedo, H.; Nurbakyt, G.; Malybayev, A.; Urazalina, A.
The Erez–Rosen Solution Versus the Hartle–Thorne Solution. *Symmetry* **2019**, *11*, 1324.
https://doi.org/10.3390/sym11101324

**AMA Style**

Boshkayev K, Quevedo H, Nurbakyt G, Malybayev A, Urazalina A.
The Erez–Rosen Solution Versus the Hartle–Thorne Solution. *Symmetry*. 2019; 11(10):1324.
https://doi.org/10.3390/sym11101324

**Chicago/Turabian Style**

Boshkayev, Kuantay, Hernando Quevedo, Gulmira Nurbakyt, Algis Malybayev, and Ainur Urazalina.
2019. "The Erez–Rosen Solution Versus the Hartle–Thorne Solution" *Symmetry* 11, no. 10: 1324.
https://doi.org/10.3390/sym11101324