# Numerical Study for Magnetohydrodynamic Flow of Nanofluid Due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Statement

## 3. Solution Methodology

## 4. Results and Discussion

## 5. Conclusions

- Larger velocity slip $\alpha $ and Hartman number $Ha$ show decreasing trend for both velocities ${f}^{\prime}\left(\zeta \right)$ and $g\left(\zeta \right)$.
- Both concentration and temperature depict increasing trend for increasing $Ha$.
- Higher Pr corresponds to weaker temperature while the reverse behavior is seen for ${\delta}_{1}$.
- Stronger temperature distribution is seen for ${N}_{b}$ and ${N}_{t}$.
- Higher $\gamma $ exhibits a decreasing trend for the concentration field.
- Higher activation energy E shows stronger concentration $\varphi \left(\zeta \right)$.
- Concentration $\varphi \left(\zeta \right)$ depicts decreasing behavior for larger $\delta $ and $\sigma $.
- Both concentration $\varphi \left(\zeta \right)$ is a decreasing factor of higher $Sc$.
- Concentration $\varphi \left(\zeta \right)$ displays reverse behavior for ${N}_{b}$ and ${N}_{t}$.

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Hsiao, K.L. Nanofluid flow with multimedia physical features for conjugate mixed convection and radiation. Comput. Fluids
**2014**, 104, 1–8. [Google Scholar] [CrossRef] - Wen, B.; Corson, L.T.; Chini, G.P. Structure and stability of steady porous medium convection at large Rayleigh number. J. Fluid Mech.
**2015**, 772, 197–224. [Google Scholar] [CrossRef] [Green Version] - Hsiao, K.L. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl. Therm. Eng.
**2016**, 98, 850–861. [Google Scholar] [CrossRef] - Hsiao, K.L. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int. J. Heat Mass Transf.
**2017**, 112, 983–990. [Google Scholar] [CrossRef] - Wen, B.; Chang, K.W.; Hesse, M.A. Rayleigh-Darcy convection with hydrodynamic dispersion. Phys. Rev. Fluids
**2018**, 3, 123801. [Google Scholar] [CrossRef] - Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress & Exposition, San Francisco, CA, USA, 12–17 November 1995; Volume 66, pp. 99–105. [Google Scholar]
- Eastman, J.A.; Choi, S.U.S.; Li, S.; Yu, W.; Thompson, L.J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett.
**2001**, 78, 718–720. [Google Scholar] [CrossRef] - Buongiorno, J. Convective transport in nanofluids. J. Heat Transf.
**2006**, 128, 240–250. [Google Scholar] [CrossRef] - Tiwari, R.K.; Das, M.K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluid. Int. J. Heat Mass Transf.
**2007**, 50, 2002–2018. [Google Scholar] [CrossRef] - Abu-Nada, E.; Oztop, H.F. Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. Int. J. Heat Fluid Flow
**2009**, 30, 669–678. [Google Scholar] [CrossRef] - Khan, J.A.; Mustafa, M.; Hayat, T.; Farooq, M.A.; Alsaedi, A.; Liao, S.J. On model for three-dimensional flow of nanofluid: An application to solar energy. J. Mol. Liq.
**2014**, 194, 41–47. [Google Scholar] [CrossRef] - Mansur, S.; Ishak, A. Three-dimensional flow and heat transfer of a nanofluid past a permeable stretching sheet with a convective boundary condition. AIP Conf. Proc.
**2014**, 1614, 906. [Google Scholar] - Hayat, T.; Muhammad, T.; Alsaedi, A.; Alhuthali, M.S. Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of nonlinear thermal radiation. J. Magn. Magn. Mater.
**2015**, 385, 222–229. [Google Scholar] [CrossRef] - Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A. On magnetohydrodynamic three-dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. Int. J. Heat Mass Transf.
**2016**, 100, 566–572. [Google Scholar] [CrossRef] - Muhammad, T.; Alsaedi, A.; Hayat, T.; Shehzad, S.A. A revised model for Darcy-Forchheimer three- dimensional flow of nanofluid subject to convective boundary condition. Results Phys.
**2017**, 7, 2791–2797. [Google Scholar] [CrossRef] - Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A. An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int. J. Therm. Sci.
**2017**, 111, 274–288. [Google Scholar] [CrossRef] - Muhammad, T.; Alsaedi, A.; Shehzad, S.A.; Hayat, T. A revised model for Darcy-Forchheimer flow of Maxwell nanofluid subject to convective boundary condition. Chin. J. Phys.
**2017**, 55, 963–976. [Google Scholar] [CrossRef] - Selimefendigil, F.; Oztop, H.F. Mixed convection of nanofluids in a three dimensional cavity with two adiabatic inner rotating cylinders. Int. J. Heat Mass Transf.
**2018**, 117, 331–343. [Google Scholar] [CrossRef] - Sheikholeslami, M.; Hayat, T.; Muhammad, T.; Alsaedi, A. MHD forced convection flow of nanofluid in a porous cavity with hot elliptic obstacle by means of Lattice Boltzmann method. Int. J. Mech. Sci.
**2018**, 135, 532–540. [Google Scholar] [CrossRef] - Mahanthesh, B.; Gireesha, B.J.; Animasaun, I.L.; Shashikumar, T.M.a.S. MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. Phys. Scr.
**2019**, 94, 085214. [Google Scholar] [CrossRef] - Hu, Z.; Lu, W.; Thouless, M.D. Slip and wear at a corner with Coulomb friction and an interfacial strength. Wear
**2015**, 338, 242–251. [Google Scholar] [CrossRef] - Hu, Z.; Lu, W.; Thouless, M.D.; Barber, J.R. Effect of plastic deformation on the evolution of wear and local stress fields in fretting. Int. J. Solids Struct.
**2016**, 82, 1–8. [Google Scholar] [CrossRef] - Wang, H.; Hu, Z.; Lu, W.; Thouless, M.D. The effect of coupled wear and creep during grid-to-rod fretting. Nucl. Eng. Des.
**2017**, 318, 163–173. [Google Scholar] [CrossRef] [Green Version] - von Karman, T. Uberlaminare und turbulente Reibung. Z. Angew. Math. Mech. ZAMM
**1921**, 1, 233–252. [Google Scholar] [CrossRef] - Cochran, W.G. The flow due to a rotating disk. Math. Proc. Camb. Philos. Soc.
**1934**, 30, 365–375. [Google Scholar] [CrossRef] - Millsaps, K.; Pohlhausen, K. Heat transfer by laminar flow from a rotating disk. J. Aeronaut. Sci.
**1952**, 19, 120–126. [Google Scholar] [CrossRef] - Ackroyd, J.A.D. On the steady flow produced by a rotating disk with either surface suction or injection. J. Eng. Math.
**1978**, 12, 207–220. [Google Scholar] [CrossRef] - Miclavcic, M.; Wang, C.Y. The flow due to a rough rotating disk. Z. Angew. Math. Phys.
**2004**, 54, 1–12. [Google Scholar] [CrossRef] - Attia, H.A. Steady flow over a rotating disk in porous medium with heat transfer. Nonlinear Anal.-Model. Control
**2009**, 14, 21–26. [Google Scholar] - Turkyilmazoglu, M.; Senel, P. Heat and mass transfer of the flow due to a rotating rough and porous disk. Int. J. Therm. Sci.
**2013**, 63, 146–158. [Google Scholar] [CrossRef] - Rashidi, M.M.; Kavyani, N.; Abelman, S. Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties. Int. J. Heat Mass Transf.
**2014**, 70, 892–917. [Google Scholar] [CrossRef] - Hatami, M.; Sheikholeslami, M.; Ganji, D.D. Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technol.
**2014**, 253, 769–779. [Google Scholar] [CrossRef] - Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A. On Bodewadt flow and heat transfer of nanofluids over a stretching stationary disk. J. Mol. Liq.
**2015**, 211, 119–125. [Google Scholar] [CrossRef] - Sheikholeslami, M.; Hatami, M.; Ganji, D.D. Numerical investigation of nanofluid spraying on an inclined rotating disk for cooling process. J. Mol. Liq.
**2015**, 211, 577–583. [Google Scholar] [CrossRef] - Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A. On magnetohydrodynamic flow of nanofluid due to a rotating disk with slip effect: A numerical study. Comput. Methods Appl. Mech. Eng.
**2017**, 315, 467–477. [Google Scholar] [CrossRef] - Mustafa, M. MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model. Int. J. Heat Mass Transf.
**2017**, 108, 1910–1916. [Google Scholar] [CrossRef] - Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A. On Darcy-Forchheimer flow of carbon nanotubes due to a rotating disk. Int. J. Heat Mass Transf.
**2017**, 112, 248–254. [Google Scholar] [CrossRef] - Pop, I.; Soundalgekar, V.M. The Hall effect on an unsteady flow due to a rotating infinite disc. Nucl. Eng. Des.
**1977**, 44, 309–314. [Google Scholar] [CrossRef] - Bachok, N.; Ishak, A.; Pop, I. Flow and heat transfer over a rotating porous disk in a nanofluid. Phys. B Condens. Matter
**2011**, 406, 1767–1772. [Google Scholar] [CrossRef] - Lok, Y.Y.; Merkin, J.H.; Pop, I. Axisymmetric rotational stagnation-point flow impinging on a permeable stretching/shrinking rotating disk. Eur. J. Mech. B/Fluids
**2018**, 72, 275–292. [Google Scholar] [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Asma, M.; Othman, W.A.M.; Muhammad, T.; Mallawi, F.; Wong, B.R.
Numerical Study for Magnetohydrodynamic Flow of Nanofluid Due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy. *Symmetry* **2019**, *11*, 1282.
https://doi.org/10.3390/sym11101282

**AMA Style**

Asma M, Othman WAM, Muhammad T, Mallawi F, Wong BR.
Numerical Study for Magnetohydrodynamic Flow of Nanofluid Due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy. *Symmetry*. 2019; 11(10):1282.
https://doi.org/10.3390/sym11101282

**Chicago/Turabian Style**

Asma, Mir, W.A.M. Othman, Taseer Muhammad, Fouad Mallawi, and B.R. Wong.
2019. "Numerical Study for Magnetohydrodynamic Flow of Nanofluid Due to a Rotating Disk with Binary Chemical Reaction and Arrhenius Activation Energy" *Symmetry* 11, no. 10: 1282.
https://doi.org/10.3390/sym11101282