Paramagnetic versus Diamagnetic Interaction in the SU(2) Higgs Model
Abstract
:1. The Model
2. Calculation
3. Summary
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Rubakov, V.A. Classical Theory of Gauge Fields; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Kripfganz, J.; Laser, A.; Schmidt, M.G. Critical bubbles and fluctuations at the electroweak phase transition. Nucl. Phys. B 1995, 433, 467. [Google Scholar] [CrossRef]
- Dosch, H.G.; Kripfganz, J.; Laser, A.; Schmidt, M.G. Bound states in the hot electroweak phase. Nucl. Phys. B 1997, 507, 519. [Google Scholar] [CrossRef]
- Huber, S.J.; Laser, A.; Reuter, M.; Schmidt, M.G. Nonperturbative contributions to the hot electroweak potential and the crossover. Nucl. Phys. B 1999, 539, 477. [Google Scholar] [CrossRef]
- Antonov, D. World-line formalism: Non-perturbative applications. Universe 2016, 2, 28. [Google Scholar] [CrossRef]
- Reuter, M.; Schmidt, M.G.; Schubert, C. Constant external fields in gauge theory and the spin 0, 1/2, 1 path integrals. Ann. Phys. 1997, 259, 313. [Google Scholar] [CrossRef]
- Schubert, C. Perturbative quantum field theory in the string-inspired formalism. Phys. Rept. 2001, 355, 73. [Google Scholar] [CrossRef]
- Makeenko, Y.M.; Migdal, A.A. Exact equation for the loop average in multicolor QCD. Phys. Lett. B 1979, 88, 135, Erratum in Phys. Lett. B 1980, 89, 437. [Google Scholar] [CrossRef]
- Makeenko, Y.M.; Migdal, A.A. Quantum chromodynamics as dynamics of loops. Nucl. Phys. B 1981, 188, 269. [Google Scholar] [CrossRef]
- Antonov, D. Heavy-quark condensate at zero and nonzero temperatures for various forms of the short-distance potential. J. High Energy Phys. 2003, 10, 030. [Google Scholar] [CrossRef]
- Antonov, D. Mixed heavy-quark-gluon condensate in the stochastic vacuum model and dual superconductor. J. High Energy Phys. 2005, 10, 018. [Google Scholar] [CrossRef]
- Antonov, D.; Ribeiro, J.E. Quark condensate for various heavy flavors. Eur. Phys. J. C 2012, 72, 2179. [Google Scholar] [CrossRef]
- Campbell, N.A.; Jorysz, I.H.; Michael, C. The adjoint source potential in SU(3) lattice gauge theory. Phys. Lett. B 1986, 167, 91. [Google Scholar] [CrossRef]
- Jorysz, I.H.; Michael, C. The field configurations of a static adjoint source in SU(2) lattice gauge theory. Nucl. Phys. B 1988, 302, 448. [Google Scholar] [CrossRef]
- Brambilla, N.; Pineda, A.; Soto, J.; Vairo, A. Potential NRQCD: An effective theory for heavy quarkonium. Nucl. Phys. B 2000, 566, 275. [Google Scholar] [CrossRef]
- Brambilla, N.; Pineda, A.; Soto, J.; Vairo, A. Effective field theories for heavy quarkonium. Rev. Mod. Phys. 2005, 77, 1423. [Google Scholar] [CrossRef]
- Simonov, Y.A. Gluelump spectrum in the QCD string model. Nucl. Phys. B 2001, 592, 350. [Google Scholar] [CrossRef]
- Antonov, D. Exploring correlations in the stochastic Yang-Mills vacuum. Phys. Lett. B 2011, 696, 214. [Google Scholar] [CrossRef]
- Khokhlachev, S.B.; Makeenko, Y.M. Phase transition over the gauge group center and quark confinement in QCD. Phys. Lett. B 1981, 101, 403. [Google Scholar] [CrossRef]
- Greensite, J.; Halpern, M.B. Suppression of color screening at large N. Phys. Rev. D 1983, 27, 2545. [Google Scholar] [CrossRef]
- Makeenko, Y.M. Methods of Contemporary Gauge Theory; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Greensite, J. The confinement problem in lattice gauge theory. Prog. Part. Nucl. Phys. 2003, 51, 1. [Google Scholar] [CrossRef]
- Ambjorn, J.; Olesen, P.; Peterson, C. Stochastic confinement and dimensional reduction: (I). Four-dimensional SU(2) lattice gauge theory. Nucl. Phys. B 1984, 240, 189. [Google Scholar] [CrossRef]
- Greensite, J. An Introduction to the Confinement Problem; Springer: Berlin, Germany, 2011. [Google Scholar]
- Schmidt, M.G.; Schubert, C. On the calculation of effective actions by string methods. Phys. Lett. B 1993, 318, 438. [Google Scholar] [CrossRef]
- Barvinsky, A.O.; Vilkovisky, G.A. Covariant perturbation theory (II). Second order in the curvature. General algorithms. Nucl. Phys. B 1990, 333, 471. [Google Scholar] [CrossRef]
- Brambilla, N.; Consoli, P.; Prosperi, G.M. Consistent derivation of the quark-antiquark and three-quark potentials in a Wilson loop context. Phys. Rev. D 1994, 50, 5878. [Google Scholar] [CrossRef]
- Dubin, A.Y.; Kaidalov, A.B.; Simonov, Y.A. Dynamical regimes of the QCD string with quarks. Phys. Lett. B 1994, 323, 41. [Google Scholar] [CrossRef]
- Shevchenko, V.I. Chiral symmetry breaking in confining theories and asymptotic limits of operator product expansion. J. High Energy Phys. 2006, 3, 082. [Google Scholar] [CrossRef]
- Ribeiro, J.E.; Antonov, D. A semi-classical analogue of the relation between the chiral and the gluon QCD condensates. Phys. Lett. B 2015, 740, 141. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonov, D. Paramagnetic versus Diamagnetic Interaction in the SU(2) Higgs Model. Symmetry 2019, 11, 1237. https://doi.org/10.3390/sym11101237
Antonov D. Paramagnetic versus Diamagnetic Interaction in the SU(2) Higgs Model. Symmetry. 2019; 11(10):1237. https://doi.org/10.3390/sym11101237
Chicago/Turabian StyleAntonov, Dmitry. 2019. "Paramagnetic versus Diamagnetic Interaction in the SU(2) Higgs Model" Symmetry 11, no. 10: 1237. https://doi.org/10.3390/sym11101237