Rainfall Runoff Analysis and Sustainable Soil Bed Optimization Engineering Process: Application of an Advanced Decision-Making Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Advanced Hydrology Apparatus
2.2. Flume
2.3. Rainfall Intensity Pattern
2.4. Slope Variation
2.5. Soil Properties and Bed Formation Variation
2.6. Flood Timing Pattern
2.7. Artificial Neural Network (ANN)
3. Results and Discussion
3.1. Application of Artificial Neural Network (ANN)
3.2. Model Parameters
3.3. Prediction Profiler
3.4. Interaction Profiles
3.5. Variable Importance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chouksey, A.; Lambey, V.; Nikam, B.; Aggarwal, S.; Dutta, S. Hydrological modelling using a rainfall simulator over an experimental hillslope plot. Hydrology 2017, 4, 17. [Google Scholar] [CrossRef]
- Chakravarti, A.; Joshi, N.; Panjiar, H. Rainfall Runoff Analysis Using the Artificial Neural Network. Indian J. Sci. Technol. 2015, 8, 1–7. [Google Scholar] [CrossRef]
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. II: Preliminary concepts. J. Hydrol. Eng. 2000, 5, 124–137. [Google Scholar] [CrossRef]
- Kalteh, A.M. Rainfall-runoff modelling using artificial neural networks (ANNs): Modelling and understanding. Casp. J. Environ. Sci. 2008, 6, 53–58. [Google Scholar]
- Dawson, C.W.; Wilby, R. An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 1998, 43, 47–66. [Google Scholar] [CrossRef]
- Ramirez, M.C.V.; de Campos Velho, H.F.; Ferreira, N.J. Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J. Hydrol. 2005, 301, 146–162. [Google Scholar] [CrossRef]
- Chiang, Y.-M.; Chang, L.-C.; Chang, F.-J. Comparison of static-feedforward and dynamic-feedback neural networks for rainfall–runoff modeling. J. Hydrol. 2004, 290, 297–311. [Google Scholar] [CrossRef]
- De Vos, N.; Rientjes, T. Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation. Hydrol. Earth Syst. Sci. Discuss. 2005, 2, 365–415. [Google Scholar] [CrossRef]
- Rajurkar, M.; Kothyari, U.; Chaube, U. Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 2004, 285, 96–113. [Google Scholar] [CrossRef]
- Smith, J.; Eli, R.N. Neural-network models of rainfall-runoff process. J. Water Resour. Plan. Manag. 1995, 121, 499–508. [Google Scholar] [CrossRef]
- Riad, S.; Mania, J.; Bouchaou, L.; Najjar, Y. Rainfall-runoff model usingan artificial neural network approach. Math. Comput. Model. 2004, 40, 839–846. [Google Scholar] [CrossRef]
- Tokar, A.S.; Johnson, P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 1999, 4, 232–239. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y.; Tsou, I. Using artificial neural network approach for modelling rainfall–runoff due to typhoon. J. Earth Syst. Sci. 2013, 122, 399–405. [Google Scholar] [CrossRef]
- Agarwal, A.; Singh, R.D.; Mishra, S.K.; Bhunya, P.K. ANN-based sediment yield models for Vamsadhara river basin (India). Water Sa 2005, 31, 85–100. [Google Scholar] [CrossRef]
- Birikundavyi, S.; Labib, R.; Trung, H.T.; Rousselle, J. Performance of neural networks in daily streamflow forecasting. J. Hydrol. Eng. 2002, 7, 392–398. [Google Scholar] [CrossRef]
- Campolo, M.; Andreussi, P.; Soldati, A. River flood forecasting with a neural network model. Water Resour. Res. 1999, 35, 1191–1197. [Google Scholar] [CrossRef]
- Dawson, C.; Wilby, R. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001, 25, 80–108. [Google Scholar] [CrossRef]
- Sonawane, A.; Hasan, M.; Rajwade, Y.; Desai, S.; Rajurkar, G.; Shinde, V.; Singh, M. Comparison of Neuro-Fuzzy and Regression Models for Prediction of Outflow of on-farm Reservoir. Int. J. Agric. Environ. Biotechnol. 2013, 6, 311. [Google Scholar]
- Tayfur, G.; Singh, V.P. ANN and fuzzy logic models for simulating event-based rainfall-runoff. J. Hydraul. Eng. 2006, 132, 1321–1330. [Google Scholar] [CrossRef]
- Tayfur, G.; Swiatek, D.; Wita, A.; Singh, V.P. Case study: Finite element method and artificial neural network models for flow through Jeziorsko earthfill dam in Poland. J. Hydraul. Eng. 2005, 131, 431–440. [Google Scholar] [CrossRef]
- Tokar, A.S.; Markus, M. Precipitation-runoff modeling using artificial neural networks and conceptual models. J. Hydrol. Eng. 2000, 5, 156–161. [Google Scholar] [CrossRef]
- AHA. Advance Hydrology Apparatus. Advanced Hydrological Investigations. 2019. Available online: https://www.gunt.de (accessed on 13 January 2019).
- Kollaros, G.; Athanasopoulou, A. Sand as a Soil Stabilizer. Bull. Geol. Soc. Greece 2016, 50, 770–777. [Google Scholar] [CrossRef]
- Matter, S. What Type of Soil is Good for a Foundation for Buildings or Houses? 2015. Available online: https://soilsmatter.wordpress.com/2015/05/01/what-type-of-soil-is-good-for-a-foundation-for-buildings-or-houses/ (accessed on 18 July 2019).
- Siddique, R.; Aggarwal, P.; Aggarwal, Y. Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks. Adv. Eng. Softw. 2011, 42, 780–786. [Google Scholar] [CrossRef]
- Mansoor, J.; Shah, S.; Khan, M.; Sadiq, A.; Anwar, M.; Siddiq, M.; Ahmad, H. Analysis of Mechanical Properties of Self Compacted Concrete by Partial Replacement of Cement with Industrial Wastes under Elevated Temperature. Appl. Sci. 2018, 8, 364. [Google Scholar] [CrossRef]
Slopes | Rainfall Intensities (mm/min) |
---|---|
0% | 12 |
1% | 12.5 |
2% | 13 |
3% | 13.5 |
Soil Types | Soil Combination | MDD | OMC | Soil | Category | LL | PL | PI |
---|---|---|---|---|---|---|---|---|
(pcf) | (%) | AASHTO | USCS | |||||
ST1 | Clay (100%) | 122.2 | 12.10 | A-7-6 | CL | 30 | 18.24 | 11.76 |
ST2 | Sand (100%) | 108.3 | 14.35 | A-3 | SP | 17 | 0 | 0 |
ST3 | Clay/sand (50%/50%) | 133.97 | 9.20 | A-4 | ML | 22 | 0 | 0 |
ST4 | Clay/sand (70%/30%) | 134.41 | 7.44 | A-4 | CL | 23.85 | 15.38 | 8.47 |
ST5 | Clay/sand (80%/20%) | 134.39 | 12.01 | A-4 | CL | 24 | 16.23 | 7.77 |
Parameters | Description | Mean | SD | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
Water retention | Water retained by soil | 2.756 | 2.41 | 0.04 | 2.15 | 7.28 |
Volume Observed | Volume of water recovered in tank (L) | 20.6 | 3.067 | 15 | 20.25 | 26.25 |
Soil types | Soil combination 1—(100% clay), 2—(100% sand), 3—(50% clay and 50% sand), 4—(70% clay and 30% sand), 5—(80% clay and 20% sand) | - | - | 1 | - | 5 |
Rainfall intensity | Rainfall intensity (mm/min) | 12.75 | 0.574 | 12 | 12.75 | 13.5 |
Bed slope (%) | Level of soil bed change | 1.5 | 1.147 | 0 | 1.5 | 3 |
Output discharge | Volume of water output (L/min) | 15.744 | 3.295 | 9.72 | 16.84 | 19.96 |
Input Parameters | Code | H1_1 | H1_2 | H1_3 | H1_4 |
Soil types | 1 | 0.000407 | −0.8086 | 0.027309 | 0.22151 |
Soil types | 2 | −0.42179 | −0.83072 | 0.512097 | −0.76482 |
Soil types | 3 | −0.00634 | −0.56721 | 0.219779 | −0.06265 |
Soil types | 4 | 0.014552 | −0.96278 | −0.24516 | 0.00394 |
Rainfall intensity | - | 0.030138 | −0.1482 | 0.973398 | 0.3635 |
Bed slope (%) | 0 | −0.06142 | −0.05476 | −0.77032 | −0.24006 |
Bed slope (%) | 1 | −0.24751 | 0.629756 | 0.572158 | −0.34591 |
Bed slope (%) | 2 | −0.10904 | −0.14146 | 0.701974 | 0.149358 |
Output discharge | - | −0.47532 | −0.04316 | 0.207968 | −0.05518 |
Intercept | - | 0.767819 | 1.601076 | −12.8997 | −4.8644 |
Output Parameters | Intercept | H1_1 | H1_2 | H1_3 | H1_4 |
Water retention | 3.289303 | −5.53419 | 3.365286 | −1.03429 | 2.874236 |
Volume observed | 20.98531 | 0.724728 | −7.21353 | 5.411468 | −1.7103 |
Measures | Training | Validation |
---|---|---|
Water Retention | ||
R2 | 0.9988175 | 0.9857542 |
RMSE | 0.0817272 | 0.2636254 |
Number of samples | 16 | 4 |
Volume Observed | ||
R2 | 0.9710259 | 0.9961819 |
RMSE | 0.5321165 | 0.1010018 |
Number of samples | 16 | 4 |
Parameter | Main Effect | Total Effect | Profile |
---|---|---|---|
Water Retention | |||
Output discharge | 0.251 | 0.566 | |
Soil type | 0.302 | 0.302 | |
Bed slope (%) | 0.302 | 0.302 | |
Rainfall intensity | 0.145 | 0.145 | |
Volume Observed | |||
Bed slope (%) | 0.305 | 0.522 | |
Output discharge | 0.192 | 0.339 | |
Soil type | 0.305 | 0.305 | |
Rainfall intensity | 0.197 | 0.197 | |
Overall | |||
Output discharge | 0.221 | 0.452 | |
Bed slope (%) | 0.304 | 0.412 | |
Soil type | 0.304 | 0.304 | |
Rainfall intensity | 0.171 | 0.171 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanif, M.H.; Adnan, M.; Shah, S.A.R.; Khan, N.M.; Nadeem, M.; Javed, J.; Akbar, M.W.; Farooq, A.; Waseem, M. Rainfall Runoff Analysis and Sustainable Soil Bed Optimization Engineering Process: Application of an Advanced Decision-Making Technique. Symmetry 2019, 11, 1224. https://doi.org/10.3390/sym11101224
Hanif MH, Adnan M, Shah SAR, Khan NM, Nadeem M, Javed J, Akbar MW, Farooq A, Waseem M. Rainfall Runoff Analysis and Sustainable Soil Bed Optimization Engineering Process: Application of an Advanced Decision-Making Technique. Symmetry. 2019; 11(10):1224. https://doi.org/10.3390/sym11101224
Chicago/Turabian StyleHanif, Muhammad Hamza, Muhammad Adnan, Syyed Adnan Raheel Shah, Nasir Mahmood Khan, Mehwish Nadeem, Jahanzeb Javed, Muhammad Waseem Akbar, Ali Farooq, and Muhammad Waseem. 2019. "Rainfall Runoff Analysis and Sustainable Soil Bed Optimization Engineering Process: Application of an Advanced Decision-Making Technique" Symmetry 11, no. 10: 1224. https://doi.org/10.3390/sym11101224