# Vacuum Condensate Picture of Quantum Gravity

## Abstract

**:**

## 1. Introduction

## 2. Regularized Path Integral for Quantum Gravity

## 3. Diffeomorphism Invariant Gravitational Correlation Functions

## 4. Renormalization Group Running of Newton’s G

## 5. Gravitational Wilson Loop and Curvature Condensate

## 6. Effective Field Equations

## 7. Large Scale Curvature and Matter Density Correlations

## 8. Gravitational Slip Function with $\mathit{G}(\mathbf{\square})$

## 9. Matter Density Perturbations with $\mathit{G}(\mathbf{\square})$

## 10. Conclusions

- ○
- The vacuum condensate picture of quantum gravity contains from the start a very limited set of parameters, and is as a result strongly constrained. It involves a new, genuinely nonperturbative scale (the gravitational vacuum condensate, see Equations (58) and (59)), which relates the running of Newton’s G to the current observed value of the cosmological constant, and to the long distance behavior of physical diffeomorphism invariant curvature correlations.
- ○
- While in principle both signs could be possible, in the strong coupling limit the effective, long distance cosmological constant is positive (see Equation (58), the arguments preceding it, and more detailed discussion in [47]). The basic argument relies of the behavior of the gravitational Wilson loop: in the same strong coupling regime, it seems impossible from the lattice theory to obtain a negative value for the effective cosmological constant, irrespective of the choice of boundary conditions (which, incidentally, in the lattice context play no role in the argument).
- ○
- The theory predicts a slow increase in strength of the gravitational coupling when very large, cosmological scales are approached (see Equations (41) and (70)). In this context, the observed scaled cosmological constant $\lambda $ is seen to act as a dynamically induced infrared cutoff, similar to what happens in non-Abelian gauge theories. In principle, both the universal power and amplitude for this infrared growth are calculable from first principles in the underlying lattice theory.
- ○
- The lattice theory appears to exclude the possibility of a physically acceptable phase with gravitational screening. The perturbative, weak coupling (small G) phase is found to be inherently unstable in the lattice formulation, a consequence of the conformal instability. Thus, a genuinely semiclassical regime for quantum gravity, whereby quantum effects can be included as small perturbations, does not seem to exist. On the other hand for large enough quantum fluctuations (large G) the conformal instability is overcome, and a new stable, anti-screening phase emerges. The stability of quantum gravity can thus be viewed as an entropy effect, intimately connected to non-trivial properties of the gravitational functional measure.
- ○
- Calculations presented here give a number of specific predictions for the behavior of invariant curvature correlations as a function of geodesic distance, and specifically the powers and amplitudes involved (see Equations (91) and (93)). Perhaps the most important result is the fact that the curvature correlation function decays as the inverse distance squared ($n=1$ and thus $s=1$ and $\gamma =2$). This in turn can be used to relate in a standard way, via the quantum equations of motion, curvature correlations to matter density correlations and thus to their observed power spectrum (see Equations (102) and (107)).
- ○
- Given the exceptionally large value of the scale $\xi $ (originating from the fact that the observed $\lambda $ is very small compared to the scale associated with G), no observable deviations from classical General Relativity are expected on laboratory, solar systems and even galactic scales (see Equations (62) and (61)).

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Wilson, K.G. Feynman-graph expansion for critical exponents. Phys. Rev. Lett.
**1972**, 28, 548–551. [Google Scholar] [CrossRef] - Wilson, K.G. The Renormalization Group: Critical Phenomena and the Kondo Problem. Rev. Mod. Phys.
**1975**, 47, 773. [Google Scholar] [CrossRef] - Parisi, G. On the Renormalizability of not Renormalizable Theories. Lett. Nuovo Cimento
**1973**, 6S2, 450. [Google Scholar] [CrossRef] - Parisi, G. On Non-Renormalizable Interactions. In Proceedings of the 1976 Cargése NATO Advances Study Institute, on New Developments in Quantum Field Theory and Statistical Mechanics; Levy, M., Mitter, P., Eds.; Plenum Press: New York, NY, USA, 1977. [Google Scholar]
- Symanzik, K. Euclidean Quantum Field Theory; Jost, R., Ed.; Varenna Lectures; Academic Press: New York, NY, USA, 1969. [Google Scholar]
- Symanzik, K. Small Distance Behavior in Field Theory and Power Counting. Commun. Math. Phys.
**1970**, 18, 227–246. [Google Scholar] [CrossRef] - Parisi, G. Statistical Field Theory; Benjamin Cummings: San Francisco, CA, USA, 1981. [Google Scholar]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena, 4th ed.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Itzykson, C.; Drouffe, J.M. Statistical Field Theory; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Cardy, J.L. Scaling and Renormalization in Statistical Physics; Cambridge Lecture Notes in Physics; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Brezin, E. Introduction to Statistical Field Theory; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Brezin, E.; Zinn-Justin, J. Renormalization of the nonlinear σ model in 2 + ϵ dimensions—Application to the Heisenberg ferromagnets. Phys. Rev. Lett.
**1976**, 36, 691. [Google Scholar] [CrossRef] - Brezin, E.; Zinn-Justin, J.; le Guillou, J.C. Renormalization of the Nonlinear σ Model in 2 + ϵ Dimensions. Phys. Rev. D
**1976**, 14, 2615. [Google Scholar] [CrossRef] - Guida, R.; Zinn-Justin, J. Critical Exponents of the N-vector Model. J. Phys. A
**1998**, 31, 8103–8121. [Google Scholar] [CrossRef] - Lipa, J.A.; Nissen, J.; Stricker, D.; Swanson, D.; Chui, T. Specific Heat of Liquid Helium in Zero Gravity very near the Lambda Point. Phys. Rev. B
**2003**, B68, 174518. [Google Scholar] [CrossRef] - Hooft, G.; Veltman, M. One-loop divergencies in the theory of gravitation. Ann. Inst. Poincaré
**1974**, 20, 69. [Google Scholar] - Veltman, M. Quantum Theory of Gravitation. Methods Field Theory
**1976**, 1, 266–328. [Google Scholar] - Hooft, G. Recent Developments in Gravitation. Cargése Lecture Notes
**1978**, 1, 299. [Google Scholar] - Feynman, R.P.; Hibbs, A. Quantum Mechanics and Path Integrals; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Wilson, K.G. Confinement of quarks. Phys. Rev. D
**1974**, 10, 2445. [Google Scholar] [CrossRef] - Hawking, S.W. General Relativity—An Einstein Centenary Survey; Hawking, S.W., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Gibbons, G.W.; Hawking, S.W. Action integrals and partition functions in quantum gravity. Phys. Rev. D
**1977**, 15, 2752. [Google Scholar] [CrossRef] - Feynman, R.P. Quantum Theory of Gravitation. Acta Phys. Pol.
**1963**, 24, 697–722. [Google Scholar] - DeWitt, B. Quantum Theory of Gravity. Phys. Rev.
**1967**, 160, 1113. [Google Scholar] [CrossRef] - Regge, T. General Relativity without Coordinates. Nuovo Cimento
**1961**, 19, 558–571. [Google Scholar] [CrossRef] - Wheeler, J.A. Geometrodynamics and the Issue of the Final State. In Relativity, Groups and Topology; DeWitt, B., DeWitt, C., Eds.; Gordon and Breach: New York, NY, USA, 1964. [Google Scholar]
- Hamber, H.W. Quantum Gravitation—The Feynman Path Integral Approach; Springer Tracts in Modern Physics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Hooft, G. Perturbative Quantum Gravity; Zichichi, A., Ed.; Erice Lecture Notes, Subnuclear Physics Series; World Scientific: Singapore, 2002; Volume 40. [Google Scholar]
- Hamber, H.W.; Williams, R.M. Discrete Wheeler-DeWitt Equation. Phys. Rev. D
**2011**, 84, 104033. [Google Scholar] [CrossRef] - Hamber, H.W.; Toriumi, R.; Williams, R.M. Wheeler-DeWitt Equation in 2 + 1 Dimensions. Phys. Rev. D
**2012**, 86, 084010. [Google Scholar] [CrossRef] - Hamber, H.W.; Toriumi, R. On the Exact Solution of Quantum Gravity in 2 + 1 Dimensions. Phys. Rev. D
**2017**, 57, 1120. [Google Scholar] - Gastmans, R.; Kallosh, R.; Truffin, C. Quantum gravity near two dimensions. Nucl. Phys. B
**1978**, 133, 417–434. [Google Scholar] [CrossRef] [Green Version] - Weinberg, S. Ultraviolet Divergences in Quantum Gravity. In General Relativity—An Einstein Centenary Survey; Hawking, S.W., Israel, W., Eds.; Cambridge University Press: Cambridge, UK, 1979. [Google Scholar]
- Kawai, H.; Ninomiya, M. Renormalization group and quantum gravity. Nucl. Phys. B
**1990**, 336, 115–145. [Google Scholar] [CrossRef] - Aida, T.; Kitazawa, Y. Two-loop prediction for scaling exponents in (2 + ϵ)-dimensional quantum gravity. Nucl. Phys. B
**1997**, 491, 427–460. [Google Scholar] [CrossRef] - Cheeger, J.; Müller, W.; Schrader, R. On the curvature of piecewise flat spaces. Commun. Math. Phys.
**1984**, 92, 405–454. [Google Scholar] [CrossRef] [Green Version] - Roucek, M.; Williams, R.M. Quantum regge calculus. Phys. Lett. B
**1981**, 104, 31–37. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Higher Derivative Quantum Gravity On A Simplicial Lattice. Nucl. Phys. B
**1984**, 248, 392–414. [Google Scholar] [CrossRef] - Hartle, J.B. Simplicial minisuperspace I. General discussion. J. Math. Phys.
**1985**, 26, 804–814. [Google Scholar] [CrossRef] - Hamber, H.W. Simplicial Quantum Gravity. 1984, pp. 375–439. Available online: https://pdfs.semanticscholar.org/f92a/f498db0a93c0940ba3c8f4411ae6554e7a24.pdf (accessed on 1 July 2018).
- Hamber, H.W.; Toriumi, R. Inconsistencies from a Running Cosmological Constant. Int. J. Mod. Phys. D
**2013**, 22, 1330023. [Google Scholar] [CrossRef] - Hamber, H.W. Invariant Correlations in Simplicial Gravity. Phys. Rev. D
**1994**, 50, 3932. [Google Scholar] [CrossRef] - Hamber, H.W. Phases of Simplicial Quantum Gravity in Four Dimensions: Estimates for the Critical Exponents. Nucl. Phys. B
**1993**, 400, 347–389. [Google Scholar] [CrossRef] - Hamber, H.W. Scaling Exponents for Lattice Quantum Gravity in Four Dimensions. Phys. Rev. D
**2015**, 92, 064017. [Google Scholar] [CrossRef] - Modanese, G. Vacuum correlations in quantum gravity. Phys. Lett. B
**1992**, 288, 69–71. [Google Scholar] [CrossRef] - Modanese, G. Geodesic round trips by parallel transport in quantum gravity. Phys. Rev. D
**1993**, 47, 502. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Gravitational Wilson Loop and Large Scale Curvature. Phys. Rev. D
**2007**, 76, 084008. [Google Scholar] [CrossRef] - Modanese, G. Potential energy in quantum gravity. Nucl. Phys. B
**1995**, 434, 697–708. [Google Scholar] [CrossRef] [Green Version] - Hamber, H.W.; Williams, R.M. Newtonian Potential in Quantum Regge Gravity. Nucl. Phys. B
**1995**, 435, 361–397. [Google Scholar] [CrossRef] - Hägler, P. Hadron Structure from Lattice Quantum Chromodynamics. Phys. Rep.
**2010**, 490, 49–175. [Google Scholar] [CrossRef] - Fodor, Z.; Hoelbling, C. Light Hadron Masses from Lattice QCD. Rev. Mod. Phys.
**2012**, 84, 449. [Google Scholar] [CrossRef] - Kadanoff, L.P. Scaling Laws for Ising Models Near Tc. Physics
**1966**, 2, 263. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Nonperturbative gravity and the spin of the lattice graviton. Phys. Rev. D
**2004**, 70, 124007. [Google Scholar] [CrossRef] [Green Version] - Litim, D.F. Fixed points of quantum gravity in extra dimensions. Phys. Rev. Lett.
**2004**, 92, 201301. [Google Scholar] [CrossRef] - Falls, K. Asymptotic safety and the cosmological constant. J. High Energy Phys.
**2016**, 1, 69. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Nonlocal Effective Gravitational Field Equations and the Running of Newton’s Constant G. Phys. Rev. D
**2005**, 72, 044026. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Renormalization group running of Newton’s G: The static isotropic case. Phys. Rev. D
**2007**, 75, 084014. [Google Scholar] [CrossRef] - Reuter, M. Nonperturbative Evolution Equation for Quantum Gravity. Phys. Rev. D
**1998**, 57, 971. [Google Scholar] [CrossRef] - Manrique, E.; Reuter, M.; Saueressig, F. Bimetric Renormalization Group Flows in Quantum Einstein Gravity. Ann. Phys.
**2011**, 326, 463–485. [Google Scholar] [CrossRef] - Codello, A.; D’Odorico, G.; Pagani, C. Consistent closure of renormalization group flow equations in quantum gravity. Phys. Rev. D
**2014**, 89, 081701. [Google Scholar] [CrossRef] - Becker, D.; Reuter, M. En route to Background Independence: Broken split-symmetry, and how to restore it with bi-metric average actions. Ann. Phys.
**2014**, 350, 225–301. [Google Scholar] [CrossRef] [Green Version] - Falls, K. Critical scaling in quantum gravity from the renormalisation group. arXiv, 2015; arXiv:1503.06233. [Google Scholar]
- Ohta, N.; Percacci, R.; Vacca, G.P. Renormalization Group Equation and scaling solutions for f(R) gravity in exponential parameterization. Eur. Phys. J. C
**2016**, 76, 46. [Google Scholar] [CrossRef] - Ohta, N.; Percacci, R.; Pereira, A.D. Gauges and functional measures in quantum gravity I: Einstein theory. JHEP
**2016**, 1606, 115. [Google Scholar] [CrossRef] - Demmel, M.; Saueressig, F.; Zanusso, O. RG flows of Quantum Einstein Gravity in the linear-geometric approximation. Ann. Phys.
**2015**, 359, 141–165. [Google Scholar] [CrossRef] [Green Version] - Gies, H.; Knorr, B.; Lippoldt, S. Generalized Parameterization Dependence in Quantum Gravity. Phys. Rev. D
**2015**, 92, 084020. [Google Scholar] [CrossRef] - Hamber, H.W.; Williams, R.M. Simplicial quantum gravity in three-dimensions: Analytical and numerical results. Phys. Rev. D
**1993**, 47, 510. [Google Scholar] [CrossRef] - Percacci, R.; Sezgin, E. One Loop Beta Functions in Topologically Massive Gravity. Class. Quant. Grav.
**2010**, 27, 155009. [Google Scholar] [CrossRef] - Planck 2015 Results. Available online: https://www.cosmos.esa.int/web/planck/publications (accessed on 1 July 2018).
- Caselle, M.; D’Adda, A.; Magnea, L. Regge Calculus as a Local Theory of the Poincare Group. Phys. Lett. B
**1989**, 232, 457–461. [Google Scholar] [CrossRef] - Frampton, P. Gauge Field Theories, 3rd ed.; John Wiley VCH: Hoboke, NJ, USA, 2008; ISBN 978-3-527-40835-1. [Google Scholar]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Addison-Wesley: Reading, MA, USA, 1995. [Google Scholar]
- Xue, S. The phase and critical point of quantum Einstein-Cartan gravity. Phys. Lett. B
**2012**, 711, 404–410. [Google Scholar] [CrossRef] - Hamber, H.W.; Yu, L.H.S. Dyson’s Equations for Quantum Gravity in the Hartree-Fock Approximation. Unpublished work. 2018. [Google Scholar]
- Brans, C.; Dicke, R.H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev.
**1961**, 124, 925. [Google Scholar] [CrossRef] - Nielsen, N.K. Asymptotic Freedom as a Spin Effect. Am. J. Phys.
**1981**, 49, 1171–1178. [Google Scholar] [CrossRef] - Hughes, R.J. Some Comments on Asymptotic Freedom. Phys. Lett. B
**1980**, 97, 246–248. [Google Scholar] [CrossRef] - Campostrini, M.; di Giacomo, A.; Gunduc, Y. Gluon condensation in SU (3) lattice gauge theory. Phys. Lett. B
**1989**, 225, 393–397. [Google Scholar] [CrossRef] - Ji, X. Gluon Condensate from Lattice QCD. arXiv, 1995; arXiv:hep-ph/9506413. [Google Scholar]
- Brodsky, S.J.; Shrock, R. Condensates in quantum chromodynamics and the cosmological constant. Proc. Natl. Acad. Sci. USA
**2009**, 108, 45–50. [Google Scholar] [CrossRef] - Dominguez, C.A.; Hernandez, L.A.; Schilcher, K. Determination of the gluon condensate from data in the charm-quark region quote (440 MeV)
^{4}. J. High Energy Phys.**2015**, 07, 110. [Google Scholar] [CrossRef] - Hamber, H.W.; Parisi, G. Numerical Estimates of Hadron Masses in a Pure SU(3) Gauge Theory. Phys. Rev. Lett.
**1981**, 47, 1795. [Google Scholar] [CrossRef] - McNeile, C.; Bazavov, A.; Davies, C.T.H.; Dowdall, R.J.; Hornbostel, K.; Lepage, G.P.; Trottier, H.D. Direct determination of the strange and light quark condensates from full lattice QCD. Phys. Rev. D
**2011**, 87, 034503. [Google Scholar] [CrossRef] - Marochnik, L.; Usikov, D.; Vereshkov, G. Macroscopic effect of quantum gravity: Graviton, ghost and instanton condensation on horizon scale of the Universe. J. Mod. Phys.
**2013**, 4, 48–101. [Google Scholar] [CrossRef] - Kuhnel, F.; Sundborg, B. High-Energy Gravitational Scattering and Bose-Einstein Condensates of Gravitons. J. High Energy Phys.
**2014**, 2014, 16. [Google Scholar] [CrossRef] - Vilkovisky, G.A. The Unique Effective Action In Quantum Field Theory. Nucl. Phys. B
**1984**, 234, 125–137. [Google Scholar] [CrossRef] - Nacir, D.L.; Mazzitelli, F.D. Running of Newton’s constant and non integer powers of the d’Alembertian. Phys. Rev. D
**2007**, 75, 024003. [Google Scholar] [CrossRef] - Hamber, H.W.; Toriumi, R. Cosmological Density Perturbations with a Scale-Dependent Newton’s G. Phys. Rev. D
**2010**, 82, 043518. [Google Scholar] [CrossRef] - Hamber, H.W.; Toriumi, R. Scale-Dependent Newton’s Constant G in the Conformal Newtonian Gauge. Phys. Rev. D
**2011**, 84, 103507. [Google Scholar] [CrossRef] - Alfaro, V.D.; Fubini, S.; Furlan, G. A new approach to the theory of gravitation. Nuovo Cimento B
**1980**, 57, 227–252. [Google Scholar] [CrossRef] - Peebles, P.J.E. Principles of Physical Cosmology; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Beneke, M. Infrared regulator and Renormalons in QCD. Renormalons. Phys. Rep.
**1999**, 317, 1. [Google Scholar] [CrossRef] - Richardson, J.L. The Heavy Quark Potential And The Upsilon, J/Psi Systems. Phys. Lett. B
**1979**, 82, 272. [Google Scholar] [CrossRef] - Bahcall, N.A. The Richness-dependent Cluster Correlation Function: Early Sloan Digital Sky Survey Data. Astrophys. J.
**2003**, 599, 814. [Google Scholar] [CrossRef] - Baugh, C. Correlation Function and Power Spectra in Cosmology. In Encyclopedia of Astronomy and Astrophysics; IOP: London, UK, 2006; ISBN 0333750888. [Google Scholar]
- Longair, M. Galaxy Formation, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Tegmark, M. The 3D power spectrum of galaxies from the SDSS. Astrophys. J.
**2004**, 606, 702–740. [Google Scholar] [CrossRef] - Durkalec, A.; Le Fèvre, O.; Pollo, A.; De La Torre, S.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B.C.; Maccagni, D.; Pentericci, L.; et al. The evolution of clustering length, large-scale bias and host halo mass at 2 < z < 5 in the VIMOS Ultra Deep Survey (VUDS). Astron. Astrophys.
**2015**, 583, A128. [Google Scholar] - Wang, Y.; Brunner, R.J.; Dolence, J.C. The SDSS Galaxy Angular Two-Point Correlation Function. Mon. Not. Astron. Soc.
**2013**, 432, 1961–1979. [Google Scholar] [CrossRef] - Coil, A.L. Planets, Stars, and Stellar Systems; Oswalt, T.D., Keel, W.C., Eds.; Springer: New York, NY, USA, 2012; Volume 8. [Google Scholar]
- Hamber, H.W.; Yu, L.H.S. Gravitational Fluctuations as an Alternative to Inflation. Unpublished work. 2018. [Google Scholar]
- Ma, C.P.; Bertschinger, E. Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges. Astrophys. J.
**1995**, 455, 7. [Google Scholar] [CrossRef] [Green Version] - Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R. Large-scale structure of the universe and cosmological perturbation theory. Phys. Rep.
**2002**, 367, 1. [Google Scholar] [CrossRef] - Amendola, L.; Kunz, M.; Sapone, D. Measuring the dark side (with weak lensing). JCAP
**2008**, 0804, 013. [Google Scholar] [CrossRef] - Daniel, S.F.; Caldwell, R.R.; Cooray, A.; Serra, P.; Melchiorri, A. A Multi-Parameter Investigation of Gravitational Slip. Phys. Rev. D
**2009**, 80, 023532. [Google Scholar] [CrossRef] - Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: Hoboken, NJ, USA, 1972. [Google Scholar]
- Schmidt, F.; Vikhlinin, A.; Hu, W. Cluster Constraints on f(R) Gravity. Phys. Rev. D
**2009**, 80, 083505. [Google Scholar] [CrossRef] - Vikhlinin, A.; Allen, S.W.; Arnaud, M.; Bautz, M.; Böhringer, H.; Bonamente, M.; Burns, J.; Evrard, A.; Henry, J.P.; Jones, C.; et al. Cosmological Studies with a Large-Area X-ray Telescope. arXiv, 2015; arXiv:0903.2297. [Google Scholar]
- Rapetti, D.; Allen, S.W.; Mantz, A.; Ebeling, H. The Observed Growth of Massive Galaxy Clusters III: Testing General Relativity on Cosmological Scales. Mon. Not. R. Astron. Soc.
**2010**, 406, 1796–1804. [Google Scholar] [CrossRef] - Uzan, J.P. The fundamental constants and their variation: Observational status and theoretical motivations. Rev. Mod. Phys.
**2003**, 75, 403. [Google Scholar] [CrossRef] - Uzan, J.P. Tests of General Relativity on Astrophysical Scales. Gen. Relat. Gravit.
**2010**, 12, 2219–2246. [Google Scholar] [CrossRef] - Damour, T. Experimental tests of Gravitational Theory. Rev. Part. Phys. J. Phys.
**2006**, 33, 1. Available online: http://pdg.lbl.gov/2009/reviews/rpp2009-rev-gravity-tests.pdf (accessed on 1 July 2018). [CrossRef] - Adelberger, E.G.; Heckel, B.R.; Nelson, A.E. Tests of the gravitational inverse-square law. Ann. Rev. Nucl. Part. Sci.
**2003**, 53, 77–121. [Google Scholar] [CrossRef]

**Figure 1.**Universal scaling exponent $\nu $ determining the running of G (see Equations (41), (70) and (62)) as a function of spacetime dimension d. Shown are the results in $2+1$ dimensions obtained from the exact solution of the lattice Wheeler–DeWitt equation [30,31], the numerical result in four dimensions [44], the $2+\u03f5$ expansion result to one [34] and two loops [35], and the large d result ${\nu}^{-1}\simeq d-1$ [53]. For actual numerical values, see Table 1.

**Figure 2.**Correlation function of two infinitesimal parallel transport loops, separated by a geodesic distance d. This correlation corresponds to the one defined in Equations (18) and (19). In the strong coupling limit, one needs, in order to get a non-zero correlation, to fully tile the minimal tube connecting the two infinitesimal initial and final loops.

**Figure 3.**Correlation function for two large parallel transport loops of size ${r}_{c}$ and orientation ${\omega}_{c}$, separated by a geodesic distance d. This correlation corresponds to the one defined in Equation (49). In the strong coupling limit, one needs, in order to get a non-zero correlation, to fully tile the tube connecting the two large initial and final loops.

**Figure 4.**Running gravitational coupling $G\left(r\right)$ versus r, obtained from $G\left(q\right)$ in Equation (41) by setting $q\sim 1/r$ with an exponent $\nu =1/3$. In view of Equation (42), lattice quantum gravity calculations imply a slow rise of G with distance scale, with roughly a 5% effect on scales of ≈790 Mpc, and a 10% effect on scales of ≈990 Mpc. In this plot, ${G}_{c}$, the short distance fixed point value for Newton’s constant, corresponds quite closely to the known laboratory value.

**Figure 5.**Running gravitational coupling $G\left(r\right)$ versus r, obtained from $G\left(q\right)$ in Equation (41) by setting $q\sim 1/r$ with an exponent $\nu =1/3$. Note that the approximate Hartree–Fock analytical result of Equation (63) (red line) initially rises more rapidly for small r. The nonperturbative scale $\xi $ is related to the gravitational vacuum condensate, as in Equation (42).

**Figure 6.**Qualitative behavior of the (gravitational quantum fluctuation-induced) matter density power spectrum $P\left(q\right)$ with a running Newton’s $G\left(q\right)$, as given explicitly in Equation (114). Here, it is compared to the results of Equations (99) and (103) for a constant G. In addition, the spectral exponent is $s=1$ and the amplitude is ${a}_{0}$, as discussed in the text (see Equations (101) and (113)); in the plot, the q wave vector is measured for convenience in units of $\xi $. Note the rather marked turnover for small $q\approx 4.20/\xi $ due to the running of G, as discussed in the text. The nonperturbative scale $\xi $ is related to the gravitational vacuum condensate, as in Equations (59) and (58).

**Figure 7.**Effective spectral index $s\left(q\right)$ as defined in Equations (99) and (115). The horizontal line at the top is the $s=1$ value, corresponding to a constant (scale-independent) Newton’s G. The spectral index approaches the value $s=1$ for large $q\gg 1/\xi $, but dips below zero for $q\simeq 1/\xi $.

**Table 1.**Comparison of estimates for the universal gravitational scaling exponent $\nu $, based on a variety of different analytical and numerical methods. These include the numerical results of [44], The $2+\u03f5$ expansion for pure gravity carried out to one and two loops [34,35], an estimate for the leading exponent in a truncated renormalization group expansion [54,55], a simple argument based on geometric features of the quantum vacuum polarization cloud for gravity [53], and finally the value obtained from consistency of the exact solution to the nonlocal field equation with a $G(\square )$ for the case of the static isotropic metric [56,57].

Method Used to Compute the Exponent $\mathit{\nu}$ in d = 4 | Universal Exponent $\mathit{\nu}$ |
---|---|

Euclidean Lattice Quantum Gravity [44] | ${\nu}^{-1}=2.997\left(9\right)$ |

Perturbative $2+\u03f5$ expansion to one loop [34] | ${\nu}^{-1}=2$ |

Perturbative $2+\u03f5$ expansion to two loops [35] | ${\nu}^{-1}=22/5=4.40$ |

Einstein–Hilbert RG truncation [54] | ${\nu}^{-1}\approx 2.80$ |

Recent improved Einstein–Hilbert RG truncation [55] | ${\nu}^{-1}\approx 3.0$ |

Geometric argument [53] ${\rho}_{vac\phantom{\rule{0.277778em}{0ex}}pol}\left(r\right)\sim {r}^{d-1}$ | ${\nu}^{-1}=d-1=3$ |

Lowest order strong coupling (large G) expansion [47] | ${\nu}^{-1}=2$ |

Nonlocal field equations with $G(\square )$ for the static metric [56] | ${\nu}^{-1}=d-1$ for $d\ge 4$ |

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hamber, H.W.
Vacuum Condensate Picture of Quantum Gravity. *Symmetry* **2019**, *11*, 87.
https://doi.org/10.3390/sym11010087

**AMA Style**

Hamber HW.
Vacuum Condensate Picture of Quantum Gravity. *Symmetry*. 2019; 11(1):87.
https://doi.org/10.3390/sym11010087

**Chicago/Turabian Style**

Hamber, Herbert W.
2019. "Vacuum Condensate Picture of Quantum Gravity" *Symmetry* 11, no. 1: 87.
https://doi.org/10.3390/sym11010087