# Comparative Evaluation of Sustainable Design Based on Step-Wise Weight Assessment Ratio Analysis (SWARA) and Best Worst Method (BWM) Methods: A Perspective on Household Furnishing Materials

^{1}

^{2}

^{*}

## Abstract

**:**

_{2}emissions, assimilated energy in buildings and enhancement of indoor air quality. With the aim of fulfilling design objectives, designers normally encounter a situation in which the selection of the most appropriate material from a set of various material alternatives is essential. Sustainability has been developing as a new concept in all human activities to create a better balance between social, environmental and economic issues. Designing materials based on the sustainability concept is a key step to enable a better balance because there is no need to re-structure phases and procedures to make the system more efficient in comparison to previous models. Some of the most commonly used materials are household furnishing materials, which can be electrical devices, kitchen gears or general furnishing materials. The volume of production and consumption of these materials is considerable, therefore a newer sustainable plan for a better designed system is justifiable. In the literature, the application of multi-attribute decision-making (MADM) methods has been found to be very suitable for evaluating materials and developing general plans for them. This study contributes by applying two approaches based on MADM methods for weighting the criteria related to the sustainable design of household furnishing materials. Step-Wise Weight Assessment Ratio Analysis (SWARA) and Best Worst Method (BWM) are two specialized and new methods for weighting criteria with different approaches. This paper has not only investigated the weighting of important and related criteria for sustainable design but has also evaluated the similarities and differences between the considered weighting methods. A comparative study of SWARA and BWM methods has never been conducted to date. The results show that, except pairwise comparisons, SWARA and BWM are certainly similar and in some cases SWARA can be more accurate and effective.

## 1. Introduction

## 2. Literature Review

## 3. Research Gap

## 4. Comparative Methodologies

#### 4.1. Best Worst Method (BWM)

_{1}

^{*}, w

_{2}

^{*}, w

_{3}

^{*}, ….w

_{n}

^{*}) by solving the following optimization model.

_{1}

^{*}, w

_{2}

^{*}, w

_{3}

^{*}, ….w

_{n}

^{*}) and the optimal value of reliability level (ξ

^{*}):

_{B}and w

_{w}indicate the weights of the best and the worst criteria respectively. a

_{Bj}is the preference of the most important (best) criterion over criterion j and a

_{jw}is the preference of criterion j over the least important (worst) criterion.

_{si}) to verify the reliability level of the pairwise comparisons using Equation (4).

_{si}value. A smaller K

_{si}value (close to zero) indicates superior consistency, whereas, a higher K

_{si}value (close to one) indicates inferior consistency made during pairwise comparisons [46].

_{BW}in Table 2 indicates the preference of the best criterion over the worst criterion. It is important to mention that CR in the AHP method is basically used to substantiate the validity of comparisons, but in BWM, its main function is to find the degree of reliability of the pairwise comparisons, thus provides more conformable results. Also, BWM employs many fewer comparisons (2n − 3) by forming comparison-vectors. This phenomena assures more reliability of the weights obtained by BWM as compared to the weights of AHP method. These advantages of BWM method have led the foundation of selecting it for sustainable material selection assessment. In addition to this, in BWM, no fractional numbers are used which makes the computation easier for the DMs. Rezai [46,71] statistical validated that BWM computes criteria weights appreciably better than AHP in terms of CR, total divergence and agreement.

#### 4.2. Step-Wise Weight Assessment Ratio Analysis (SWARA)

^{th}criterion in congruence with the previous (j − 1) criterion through comparative importance of average value (s

_{j}) ratio.

## 5. Comparative Results

#### 5.1. Economic Dimension

_{1-1}(initial costs) and C

_{1-4}(maintenance cost) emerge out as the most and least important criteria under economic dimension.

#### 5.2. Social Dimension

_{2-1}(safety and security) becomes the most prominent criteria, whereas C

_{2-4}(functionality) is the least important criteria.

#### 5.3. Environmental Dimension

_{3-6}(decomposition) and C

_{3-7}(upgrades possibility) criteria received the maximum and minimum weights respectively.

## 6. Discussion and Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Appendix A

**Experts’ opinions:**

**Expert 1**

**Expert 2**

**Expert 3**

**Expert 4**

**Expert 5**

## Appendix B

**Detail calculations:**

**Economic dimension:**

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{1-1} | - | 1 | 1 | 0.223 | 0.075 |

C_{1-2} | 0.15 | 1.15 | 0.87 | 0.194 | 0.064 |

C_{1-5} | 0.1 | 1.1 | 0.791 | 0.177 | 0.058 |

C_{1-6} | 0.2 | 1.2 | 0.66 | 0.148 | 0.05 |

C_{1-3} | 0.1 | 1.1 | 0.6 | 0.135 | 0.045 |

C_{1-4} | 0.1 | 1.1 | 0.546 | 0.123 | 0.041 |

**Table A2.**Best criterion to other criteria for economic dimension based on BWM method (Expert number 1).

Best to Others | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

C_{1-1} | 1 | 2 | 5 | 6 | 3 | 4 |

**Table A3.**Other criteria to the worst criterion for economic dimension based on BWM method (Expert number 1).

Others to the Worst | C_{1-4} |

C_{1-1} | 7 |

C_{1-2} | 6 |

C_{1-3} | 3 |

C_{1-4} | 1 |

C_{1-5} | 4 |

C_{1-6} | 5 |

**Table A4.**Final results and weights of main criteria for economic dimension based on BWM method (Expert number 1).

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

0.362 | 0.232 | 0.093 | 0.043 | 0.154 | 0.116 | |

Final weight | 0.121 | 0.077 | 0.031 | 0.014 | 0.051 | 0.039 |

K_{si} | 0.101 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

SWARA | 0.075 | 0.064 | 0.045 | 0.041 | 0.058 | 0.05 |

BWM | 0.121 | 0.077 | 0.031 | 0.014 | 0.051 | 0.039 |

Priority based on SWARA | 1 | 2 | 5 | 6 | 3 | 4 |

Priority based on BWM | 1 | 2 | 5 | 6 | 3 | 4 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{1-1} | - | 1 | 1 | 0.235 | 0.078 |

C_{1-2} | 0.2 | 1.2 | 0.833 | 0.196 | 0.065 |

C_{1-5} | 0.15 | 1.15 | 0.725 | 0.170 | 0.057 |

C_{1-6} | 0.15 | 1.15 | 0.630 | 0.148 | 0.049 |

C_{1-3} | 0.1 | 1.1 | 0.573 | 0.134 | 0.045 |

C_{1-4} | 0.15 | 1.15 | 0.498 | 0.117 | 0.039 |

**Table A7.**Best criterion to other criteria for economic dimension based on BWM method (Expert number 2).

Best to Others | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

C_{1-1} | 1 | 3 | 6 | 7 | 4 | 5 |

**Table A8.**Other criteria to the worst criterion for economic dimension based on BWM method (Expert number 2).

Others to the Worst | C_{1-4} |

C_{1-1} | 6 |

C_{1-2} | 5 |

C_{1-3} | 2 |

C_{1-4} | 1 |

C_{1-5} | 3 |

C_{1-6} | 4 |

**Table A9.**Final results and weights of main criteria for economic dimension based on BWM method (Expert number 2).

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

0.432 | 0.180 | 0.090 | 0.054 | 0.135 | 0.108 | |

Final weight | 0.144 | 0.060 | 0.030 | 0.018 | 0.045 | 0.036 |

K_{si} | 0.108 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

SWARA | 0.078 | 0.065 | 0.045 | 0.039 | 0.057 | 0.049 |

BWM | 0.144 | 0.060 | 0.030 | 0.018 | 0.045 | 0.036 |

Priority based on SWARA | 1 | 2 | 5 | 6 | 3 | 4 |

Priority based on BWM | 1 | 2 | 5 | 6 | 3 | 4 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{1-1} | - | 1 | 1 | 0.224 | 0.075 |

C_{1-2} | 0.1 | 1.1 | 0.909 | 0.204 | 0.068 |

C_{1-5} | 0.15 | 1.15 | 0.791 | 0.177 | 0.059 |

C_{1-6} | 0.15 | 1.15 | 0.687 | 0.154 | 0.051 |

C_{1-3} | 0.2 | 1.2 | 0.573 | 0.128 | 0.043 |

C_{1-4} | 0.15 | 1.15 | 0.498 | 0.112 | 0.037 |

**Table A12.**Best criterion to other criteria for economic dimension based on BWM method (Expert number 3).

Best to Others | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

C_{1-1} | 1 | 2 | 6 | 7 | 3 | 4 |

**Table A13.**Other criteria to the worst criterion for economic dimension based on BWM method (Expert number 3).

Others to the Worst | C_{1-4} |

C_{1-1} | 7 |

C_{1-2} | 6 |

C_{1-3} | 2 |

C_{1-4} | 1 |

C_{1-5} | 3 |

C_{1-6} | 5 |

**Table A14.**Final results and weights of main criteria for economic dimension based on BWM method (Expert number 3).

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

0.377 | 0.233 | 0.078 | 0.041 | 0.155 | 0.116 | |

Final weight | 0.125 | 0.078 | 0.026 | 0.014 | 0.052 | 0.039 |

K_{si} (BWM) | 0.089 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

SWARA | 0.075 | 0.068 | 0.043 | 0.037 | 0.059 | 0.051 |

BWM | 0.125 | 0.078 | 0.026 | 0.014 | 0.052 | 0.039 |

Priority based on SWARA | 1 | 2 | 5 | 6 | 3 | 4 |

Priority based on BWM | 1 | 2 | 5 | 6 | 3 | 4 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{1-1} | - | 1 | 1 | 0.218 | 0.072 |

C_{1-2} | 0.1 | 1.1 | 0.909 | 0.198 | 0.066 |

C_{1-5} | 0.1 | 1.1 | 0.826 | 0.180 | 0.060 |

C_{1-6} | 0.15 | 1.15 | 0.719 | 0.156 | 0.052 |

C_{1-3} | 0.2 | 1.2 | 0.599 | 0.130 | 0.043 |

C_{1-4} | 0.1 | 1.1 | 0.544 | 0.118 | 0.039 |

**Table A17.**Best criterion to other criteria for economic dimension based on BWM method (Expert number 4).

Best to Others | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

C_{1-1} | 1 | 2 | 6 | 6 | 4 | 5 |

**Table A18.**Other criteria to the worst criterion for economic dimension based on BWM method (Expert number 4).

Others to the Worst | C_{1-4} |

C_{1-1} | 6 |

C_{1-2} | 5 |

C_{1-3} | 3 |

C_{1-4} | 1 |

C_{1-5} | 4 |

C_{1-6} | 3 |

**Table A19.**Final results and weights of main criteria for economic dimension based on BWM method (Expert number 4).

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

0.402 | 0.244 | 0.081 | 0.052 | 0.122 | 0.098 | |

Final weight | 0.134 | 0.081 | 0.027 | 0.017 | 0.041 | 0.033 |

K_{si} (BWM) | 0.087 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

SWARA | 0.072 | 0.066 | 0.043 | 0.039 | 0.060 | 0.052 |

BWM | 0.134 | 0.081 | 0.027 | 0.017 | 0.041 | 0.033 |

Priority based on SWARA | 1 | 2 | 5 | 6 | 3 | 4 |

Priority based on BWM | 1 | 2 | 5 | 6 | 3 | 4 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{1-1} | - | 1 | 1 | 0.236 | 0.078 |

C_{1-2} | 0.15 | 1.15 | 0.870 | 0.205 | 0.068 |

C_{1-5} | 0.2 | 1.2 | 0.725 | 0.171 | 0.057 |

C_{1-6} | 0.2 | 1.2 | 0.604 | 0.142 | 0.047 |

C_{1-3} | 0.1 | 1.1 | 0.549 | 0.129 | 0.043 |

C_{1-4} | 0.1 | 1.1 | 0.499 | 0.118 | 0.039 |

**Table A22.**Best criterion to other criteria for economic dimension based on BWM method (Expert number 5).

Best to Others | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

C_{1-1} | 1 | 3 | 6 | 7 | 4 | 5 |

**Table A23.**Other criteria to the worst criterion for economic dimension based on BWM method (Expert number 5).

Others to the Worst | C_{1-4} |

C_{1-1} | 7 |

C_{1-2} | 6 |

C_{1-3} | 3 |

C_{1-4} | 1 |

C_{1-5} | 6 |

C_{1-6} | 4 |

**Table A24.**Final results and weights of main criteria for economic dimension based on BWM method (Expert number 5).

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

0.430 | 0.185 | 0.092 | 0.044 | 0.138 | 0.111 | |

Final weights | 0.143 | 0.061 | 0.031 | 0.015 | 0.046 | 0.037 |

K_{si} (BWM) | 0.124 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

SWARA | 0.078 | 0.068 | 0.043 | 0.039 | 0.057 | 0.047 |

BWM | 0.143 | 0.061 | 0.031 | 0.015 | 0.046 | 0.037 |

Priority based on SWARA | 1 | 2 | 5 | 6 | 3 | 4 |

Priority based on BWM | 1 | 2 | 5 | 6 | 3 | 4 |

**Social dimension:**

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{2-1} | - | 1 | 1 | 0.316 | 0.105 |

C_{2-2} | 0.2 | 1.2 | 0.833 | 0.264 | 0.088 |

C_{2-3} | 0.15 | 1.15 | 0.725 | 0.229 | 0.076 |

C_{2-4} | 0.2 | 1.2 | 0.604 | 0.191 | 0.064 |

**Table A27.**Best criterion to other criteria for social dimension based on BWM method (Expert number 1).

Best to Others | C_{2-1} | C_{2-2} | C_{2-3} | C_{2-4} |

C_{2-1} | 1 | 2 | 3 | 4 |

**Table A28.**Other criteria to the worst criterion for social dimension based on BWM method (Expert number 1).

Others to the Worst | C_{2-4} |

C_{2-1} | 5 |

C_{2-2} | 4 |

C_{2-3} | 3 |

C_{2-4} | 1 |

**Table A29.**Final results and weights of main criteria for social dimension based on BWM method (Expert number 1).

Weight | C_{1} | C_{2} | C_{3} | C_{4} |

0.455 | 0.273 | 0.182 | 0.091 | |

Final weight | 0.151 | 0.091 | 0.061 | 0.030 |

K_{si} (BWM) | 0.091 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} |

SWARA | 0.105 | 0.088 | 0.076 | 0.064 |

BWM | 0.151 | 0.091 | 0.061 | 0.030 |

Priority based on SWARA | 1 | 2 | 3 | 4 |

Priority based on BWM | 1 | 2 | 3 | 4 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{2-1} | - | 1 | 1 | 0.301 | 0.100 |

C_{2-2} | 0.1 | 1.1 | 0.909 | 0.273 | 0.091 |

C_{2-3} | 0.2 | 1.2 | 0.758 | 0.228 | 0.076 |

C_{2-4} | 0.15 | 1.15 | 0.659 | 0.198 | 0.066 |

**Table A32.**Best criterion to other criteria for social dimension based on BWM method (Expert number 2).

Best to Others | C_{2-1} | C_{2-2} | C_{2-3} | C_{2-4} |

C_{2-1} | 1 | 3 | 5 | 7 |

**Table A33.**Other criteria to the worst criterion for social dimension based on BWM method (Expert number 2).

Others to the Worst | C_{2-4} |

C_{2-1} | 6 |

C_{2-2} | 5 |

C_{2-3} | 4 |

C_{2-4} | 1 |

**Table A34.**Final results and weights of main criteria for social dimension based on BWM method (Expert number 2).

Weight | C_{1} | C_{2} | C_{3} | C_{4} |

0.558 | 0.223 | 0.140 | 0.070 | |

Final weight | 0.186 | 0.077 | 0.046 | 0.023 |

K_{si} (BWM) | 0.140 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} |

SWARA | 0.100 | 0.091 | 0.076 | 0.066 |

BWM | 0.186 | 0.077 | 0.046 | 0.023 |

Priority based on SWARA | 1 | 2 | 3 | 4 |

Priority based on BWM | 1 | 2 | 3 | 4 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ |

C_{2-1} | - | 1 | 1 | 0.103 |

C_{2-2} | 0.2 | 1.2 | 0.833 | 0.086 |

C_{2-3} | 0.1 | 1.1 | 0.758 | 0.078 |

C_{2-4} | 0.2 | 1.2 | 0.631 | 0.065 |

**Table A37.**Best criterion to other criteria for social dimension based on BWM method (Expert number 3).

Best to Others | C_{2-1} | C_{2-2} | C_{2-3} | C_{2-4} |

C_{2-1} | 1 | 3 | 4 | 6 |

**Table A38.**Other criteria to the worst criterion for social dimension based on BWM method (Expert number 3).

Others to the Worst | C_{2-4} |

C_{2-1} | 6 |

C_{2-2} | 4 |

C_{2-3} | 3 |

C_{2-4} | 1 |

**Table A39.**Final results and weights of main criteria for social dimension based on BWM method (Expert number 3).

Weight | C_{1} | C_{2} | C_{3} | C_{4} |

0.550 | 0.214 | 0.160 | 0.076 | |

Final weight | 0.183 | 0.071 | 0.053 | 0.025 |

K_{si} (BWM) | 0.092 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} |

SWARA | 0.103 | 0.086 | 0.078 | 0.065 |

BWM | 0.183 | 0.071 | 0.053 | 0.025 |

Priority based on SWARA | 1 | 2 | 3 | 4 |

Priority based on BWM | 1 | 2 | 3 | 4 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{2-1} | - | 1 | 1 | 0.318 | 0.106 |

C_{2-2} | 0.15 | 1.15 | 0.870 | 0.276 | 0.092 |

C_{2-3} | 0.25 | 1.25 | 0.696 | 0.221 | 0.074 |

C_{2-4} | 0.2 | 1.2 | 0.580 | 0.184 | 0.061 |

**Table A42.**Best criterion to other criteria for social dimension based on BWM method (Expert number 4).

Best to Others | C_{2-1} | C_{2-2} | C_{2-3} | C_{2-4} |

C_{2-1} | 1 | 3 | 4 | 5 |

**Table A43.**Other criteria to the worst criterion for social dimension based on BWM method (Expert number 4).

Others to the Worst | C_{2-4} |

C_{2-1} | 5 |

C_{2-2} | 4 |

C_{2-3} | 3 |

C_{2-4} | 1 |

**Table A44.**Final results and weights of main criteria for social dimension based on BWM method (Expert number 4).

Weight | C_{1} | C_{2} | C_{3} | C_{4} |

0.536 | 0.218 | 0.163 | 0.084 | |

Final weight | 0.178 | 0.072 | 0.054 | 0.028 |

K_{si} (BWM) | 0.117 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} |

SWARA | 0.106 | 0.092 | 0.074 | 0.061 |

BWM | 0.178 | 0.072 | 0.054 | 0.028 |

Priority based on SWARA | 1 | 2 | 3 | 4 |

Priority based on BWM | 1 | 2 | 3 | 4 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{2-1} | - | 1 | 1 | 0.303 | 0.101 |

C_{2-2} | 0.1 | 1.1 | 0.909 | 0.276 | 0.092 |

C_{2-3} | 0.2 | 1.2 | 0.758 | 0.230 | 0.076 |

C_{2-4} | 0.2 | 1.2 | 0.631 | 0.191 | 0.064 |

**Table A47.**Best criterion to other criteria for social dimension based on BWM method (Expert number 5).

Best to Others | C_{2-1} | C_{2-2} | C_{2-3} | C_{2-4} |

C_{2-1} | 1 | 2 | 4 | 5 |

**Table A48.**Other criteria to the worst criterion for social dimension based on BWM method (Expert number 5).

Others to the Worst | C_{2-4} |

C_{2-1} | 5 |

C_{2-2} | 4 |

C_{2-3} | 3 |

C_{2-4} | 1 |

**Table A49.**Final results and weights of main criteria for social dimension based on BWM method (Expert number 5).

Weight | C_{1} | C_{2} | C_{3} | C_{4} |

0.487 | 0.289 | 0.145 | 0.079 | |

Final weight | 0.162 | 0.096 | 0.048 | 0.026 |

K_{si} (BWM) | 0.092 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} |

SWARA | 0.101 | 0.092 | 0.076 | 0.064 |

BWM | 0.162 | 0.096 | 0.048 | 0.026 |

Priority based on SWARA | 1 | 2 | 3 | 4 |

Priority based on BWM | 1 | 2 | 3 | 4 |

**Environmental dimension:**

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{3-6} | - | 1 | 1 | 0.221 | 0.074 |

C_{3-1} | 0.2 | 1.2 | 0.833 | 0.184 | 0.061 |

C_{3-5} | 0.15 | 1.15 | 0.725 | 0.160 | 0.053 |

C_{3-2} | 0.2 | 1.2 | 0.604 | 0.133 | 0.045 |

C_{3-4} | 0.1 | 1.1 | 0.549 | 0.121 | 0.040 |

C_{3-3} | 0.25 | 1.25 | 0.439 | 0.097 | 0.032 |

C_{3-7} | 0.15 | 1.15 | 0.382 | 0.084 | 0.028 |

**Table A52.**Best criterion to other criteria for environment dimension based on BWM method (Expert number 1).

Best to Others | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

C_{3-6} | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

**Table A53.**Other criteria to the worst criterion for environment dimension based on BWM method (Expert number 1).

Others to the Worst | C_{3-7} |

C_{3-1} | 6 |

C_{3-2} | 4 |

C_{3-3} | 2 |

C_{3-4} | 3 |

C_{3-5} | 5 |

C_{3-6} | 7 |

C_{3-7} | 1 |

**Table A54.**Final results and weights of main criteria for environment dimension based on BWM method (Expert number 1).

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

0.209 | 0.105 | 0.070 | 0.084 | 0.139 | 0.353 | 0.041 | |

Final weight | 0.070 | 0.035 | 0.023 | 0.028 | 0.047 | 0.118 | 0.014 |

K_{si} (BWM) | 0.066 |

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

SWARA | 0.061 | 0.045 | 0.032 | 0.040 | 0.053 | 0.074 | 0.028 |

BWM | 0.070 | 0.035 | 0.023 | 0.028 | 0.047 | 0.118 | 0.014 |

Priority based on SWARA | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Priority based on BWM | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{3-6} | - | 1 | 1 | 0.224 | 0.075 |

C_{3-1} | 0.2 | 1.2 | 0.833 | 0.186 | 0.062 |

C_{3-5} | 0.25 | 1.25 | 0.667 | 0.149 | 0.050 |

C_{3-2} | 0.1 | 1.1 | 0.606 | 0.136 | 0.045 |

C_{3-4} | 0.15 | 1.15 | 0.527 | 0.118 | 0.039 |

C_{3-3} | 0.2 | 1.2 | 0.439 | 0.098 | 0.033 |

C_{3-7} | 0.1 | 1.1 | 0.399 | 0.089 | 0.030 |

**Table A57.**Best criterion to other criteria for environment dimension based on BWM method (Expert number 2).

Best to Others | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

C_{3-6} | 2 | 4 | 5 | 5 | 3 | 1 | 6 |

**Table A58.**Other criteria to the worst criterion for environment dimension based on BWM method (Expert number 2).

Others to the Worst | C_{3-7} |

C_{3-1} | 6 |

C_{3-2} | 4 |

C_{3-3} | 2 |

C_{3-4} | 4 |

C_{3-5} | 5 |

C_{3-6} | 7 |

C_{3-7} | 1 |

**Table A59.**Final results and weights of main criteria for environment dimension based on BWM method (Expert number 2).

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

0.210 | 0.105 | 0.084 | 0.084 | 0.140 | 0.336 | 0.042 | |

Final weight | 0.070 | 0.035 | 0.028 | 0.028 | 0.047 | 0.112 | 0.014 |

K_{si} (BWM) | 0.084 |

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

SWARA | 0.062 | 0.045 | 0.033 | 0.039 | 0.050 | 0.075 | 0.030 |

BWM | 0.070 | 0.035 | 0.028 | 0.028 | 0.047 | 0.112 | 0.014 |

Priority based on SWARA | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Priority based on BWM | 2 | 4 | 5 | 5 | 3 | 1 | 7 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{3-6} | - | 1 | 1 | 0.208 | 0.070 |

C_{3-1} | 0.1 | 1.1 | 0.909 | 0.189 | 0.063 |

C_{3-5} | 0.15 | 1.15 | 0.791 | 0.165 | 0.055 |

C_{3-2} | 0.2 | 1.2 | 0.659 | 0.137 | 0.046 |

C_{3-4} | 0.2 | 1.2 | 0.549 | 0.114 | 0.038 |

C_{3-3} | 0.15 | 1.15 | 0.477 | 0.099 | 0.033 |

C_{3-7} | 0.15 | 1.15 | 0.415 | 0.086 | 0.029 |

**Table A62.**Best criterion to other criteria for environment dimension based on BWM method (Expert number 3).

Best to Others | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

C_{3-6} | 2 | 4 | 5 | 5 | 3 | 1 | 6 |

**Table A63.**Other criteria to the worst criterion for environment dimension based on BWM method (Expert number 3).

Others to the Worst | C_{3-7} |

C_{3-1} | 6 |

C_{3-2} | 4 |

C_{3-3} | 2 |

C_{3-4} | 4 |

C_{3-5} | 5 |

C_{3-6} | 7 |

C_{3-7} | 1 |

**Table A64.**Final results and weights of main criteria for environment dimension based on BWM method (Expert number 3).

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

0.210 | 0.105 | 0.084 | 0.084 | 0.140 | 0.336 | 0.042 | |

Final weights | 0.070 | 0.035 | 0.028 | 0.028 | 0.047 | 0.112 | 0.014 |

K_{si} (BWM) | 0.084 |

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

SWARA | 0.062 | 0.045 | 0.033 | 0.039 | 0.050 | 0.075 | 0.030 |

BWM | 0.070 | 0.035 | 0.028 | 0.028 | 0.047 | 0.112 | 0.014 |

Priority based on SWARA | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Priority based on BWM | 2 | 4 | 5 | 5 | 3 | 1 | 7 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{3-6} | - | 1 | 1 | 0.219 | 0.073 |

C_{3-1} | 0.15 | 1.15 | 0.870 | 0.190 | 0.064 |

C_{3-5} | 0.25 | 1.25 | 0.696 | 0.152 | 0.051 |

C_{3-2} | 0.1 | 1.1 | 0.632 | 0.139 | 0.046 |

C_{3-4} | 0.2 | 1.2 | 0.527 | 0.115 | 0.039 |

C_{3-3} | 0.15 | 1.15 | 0.458 | 0.100 | 0.034 |

C_{3-7} | 0.2 | 1.2 | 0.382 | 0.084 | 0.028 |

**Table A67.**Best criterion to other criteria for environment dimension based on BWM method (Expert number 4).

Best to Others | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

C_{3-6} | 2 | 4 | 7 | 6 | 3 | 1 | 8 |

**Table A68.**Other criteria to the worst criterion for environment dimension based on BWM method (Expert number 4).

Others to the Worst | C_{3-7} |

C_{3-1} | 7 |

C_{3-2} | 3 |

C_{3-3} | 2 |

C_{3-4} | 4 |

C_{3-5} | 5 |

C_{3-6} | 8 |

C_{3-7} | 1 |

**Table A69.**Final results and weights of main criteria for environment dimension based on BWM method (Expert number 4).

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

0.216 | 0.108 | 0.062 | 0.072 | 0.144 | 0.361 | 0.036 | |

Final weight | 0.072 | 0.036 | 0.021 | 0.024 | 0.048 | 0.121 | 0.012 |

K_{si} (BWM) | 0.072 |

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

SWARA | 0.064 | 0.046 | 0.034 | 0.039 | 0.051 | 0.073 | 0.028 |

BWM | 0.072 | 0.036 | 0.021 | 0.024 | 0.048 | 0.121 | 0.012 |

Priority based on SWARA | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Priority based on BWM | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Criteria | The Comparative Importance of Average Value S _{j} | Coefficient K _{j} = S_{j} + 1 | Recalculated Weight ${{\displaystyle w}}_{j}=\frac{{{\displaystyle x}}_{j-1}}{{{\displaystyle k}}_{j}}$ | Weight ${{\displaystyle q}}_{j}=\frac{{{\displaystyle w}}_{j}}{{{\displaystyle {\displaystyle \sum w}}}_{j}}$ | Final Weight |

C_{3-6} | - | 1 | 1 | 0.212 | 0.071 |

C_{3-1} | 0.2 | 1.2 | 0.833 | 0.177 | 0.059 |

C_{3-5} | 0.1 | 1.1 | 0.758 | 0.161 | 0.054 |

C_{3-2} | 0.15 | 1.15 | 0.659 | 0.140 | 0.047 |

C_{3-4} | 0.15 | 1.15 | 0.573 | 0.121 | 0.041 |

C_{3-3} | 0.2 | 1.2 | 0.477 | 0.101 | 0.034 |

C_{3-7} | 0.15 | 1.15 | 0.415 | 0.088 | 0.029 |

**Table A72.**Best criterion to other criteria for environment dimension based on BWM method (Expert number 5).

Best to Others | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

C_{3-6} | 3 | 5 | 8 | 7 | 4 | 1 | 8 |

**Table A73.**Other criteria to the worst criterion for environment dimension based on BWM method (Expert number 5).

Others to the Worst | C_{3-7} |

C_{3-1} | 7 |

C_{3-2} | 4 |

C_{3-3} | 3 |

C_{3-4} | 3 |

C_{3-5} | 5 |

C_{3-6} | 7 |

C_{3-7} | 1 |

**Table A74.**Final results and weights of main criteria for environment dimension based on BWM method (Expert number 5).

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

0.175 | 0.105 | 0.066 | 0.075 | 0.131 | 0.408 | 0.042 | |

Final weight | 0.058 | 0.035 | 0.022 | 0.025 | 0.044 | 0.136 | 0.014 |

K_{si} (BWM) | 0.116 |

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

SWARA | 0.059 | 0.047 | 0.034 | 0.041 | 0.054 | 0.071 | 0.029 |

BWM | 0.058 | 0.035 | 0.022 | 0.025 | 0.044 | 0.136 | 0.014 |

Priority based on SWARA | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Priority based on BWM | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

## References

- Tian, G.; Zhang, H.H.; Feng, Y.X.; Wang, D.Q.; Peng, Y.; Jia, H.F. Green decoration materials selection under interior environment characteristics: A grey-correlation based hybrid MCDM method. Renew. Sustain. Energy Rev.
**2018**, 81, 682–692. [Google Scholar] [CrossRef] - Hayles, C.S. Environmentally sustainable interior design: A snapshot of current supply of and demand for green, sustainable or Fair Trade products for interior design practice. Int. J. Sustain. Built Environ.
**2015**, 4, 100–108. [Google Scholar] [CrossRef] [Green Version] - Farag, M.M. Quantitative methods of materials selection. In Handbook of Materials Selection; Kutz, M., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002; pp. 3–24. [Google Scholar]
- Cables, E.; Lamata, M.T.; Verdegay, J.L. RIM-reference ideal method in multi criteria decision making. Inf. Sci.
**2016**, 337–338, 1–10. [Google Scholar] [CrossRef] - Yazdani, M.; Jahan, A.; Zavadskas, E.K. Analysis in Material Selection: Influence of Normalization Tools on COPRAS-G. Econ. Comput. Econ. Cybern. Stud. Res.
**2017**, 51, 59–74. [Google Scholar] - Ogunkah, I.; Yang, J. Investigating Factors Affecting Material Selection: The Impacts on Green Vernacular Building Materials in the Design-Decision Making Process. Buildings
**2012**, 2, 1–32. [Google Scholar] [CrossRef] [Green Version] - Castro-Lacouture, D.; Sefair, J.; Flórez, L.; Medaglia, A.L. Optimization model for the selection of materials using a LEED-based green building rating system in Colombia. Build. Environ.
**2009**, 44, 1162–1170. [Google Scholar] [CrossRef] - Zhou, C.C.; Yin, G.F.; Hu, X.B. Multi-objective optimization of material selection for sustainable products: Artificial neural networks and genetic algorithm approach. Mater. Des.
**2009**, 30, 1209–1215. [Google Scholar] [CrossRef] - Rahman, S.; Srinath, P.; Henry, O.; Yaxin, B. A knowledge-based decision support system for roofing materials selection and cost estimating: A conceptual framework and data modelling. In Proceedings of the 25th Annual ARCOM Conference, Nottingham, UK, 7–9 September 2009. [Google Scholar]
- Maniya, K.; Bhatt, M.G. A selection of material using a novel type decision-making method: Preference selection index method. Mater. Des.
**2010**, 31, 1785–1789. [Google Scholar] [CrossRef] - Akadiri, P.O.; Olomolaiye, P.O.; Chinyio, E.A. Multi-criteria evaluation model for the selection of sustainable materials for building projects. Autom. Constr.
**2013**, 30, 113–125. [Google Scholar] [CrossRef] - Florez, L.; Castro-Lacouture, D. Optimization model for sustainable materials selection using objective and subjective factors. Mater. Des.
**2013**, 46, 310–321. [Google Scholar] [CrossRef] - Baharetha, S.M.; Al-Hammad, A.A.; Alshuwaikhat, H.M. Towards a unified set of sustainable building materials criteria. In Proceedings of the International Conference on Sustainable Design, Engineering, and Construction, Fort Worth, TX, USA, 7–9 November 2013; pp. 732–740. [Google Scholar]
- Ribeiro, I.; Peças, P.; Henriques, E. A life cycle framework to support material selection for Ecodesign: A case study on biodegradable polymers. Mater. Des.
**2013**, 51, 300–308. [Google Scholar] [CrossRef] - Hosseinijou, S.A.; Mansour, S.; Shirazi, M.A. Social life cycle assessment for material selection: A case study of building materials. Int. J. Life Cycle Assess.
**2014**, 19, 620–645. [Google Scholar] [CrossRef] - Van der Velden, N.M.; Kuusk, K.; Köhler, A.R. Life cycle assessment and eco-design of smart textiles: The importance of material selection demonstrated through e-textile product redesign. Mater. Des.
**2015**, 84, 313–324. [Google Scholar] [CrossRef] - Zhao, R.; Su, H.; Chen, X.; Yu, Y. Commercially available materials selection in sustainable design: An integrated multi-attribute decision making approach. Sustainability
**2016**, 8, 79. [Google Scholar] [CrossRef] - Ma, F.; Zhao, Y.; Pu, Y.; Li, J. A comprehensive multi-criteria decision making model for sustainable material selection considering life cycle assessment method. IEEE Access
**2018**, 6, 58338–58354. [Google Scholar] [CrossRef] - Bhowmik, C.; Gangwar, S.; Bhowmik, S.; Ray, A. Optimum Selection of Energy-Efficient Material: A MCDM-Based Distance Approach. In Soft Computing Applications. Studies in Computational Intelligence; Ray, K., Pant, M., Bandyopadhyay, A., Eds.; Springer: Singapore, 2018; p. 761. [Google Scholar]
- Sahamir, S.R.; Zakaria, R.; Rooshdi, R.R.; Adenan, M.A.; Shamsuddin, S.M.; Abidin, N.I.; Ismail, N.A.; Aminudin, E. Multi-Criteria Decision Analysis for Evaluating Sustainable Lifts Design of Public Hospital Buildings. Chem. Eng. Trans.
**2018**, 63, 199–204. [Google Scholar] - Moghtadernejad, S.; Chouinard, L.E.; Mirza, M.S. Multi-criteria decision-making methods for preliminary design of sustainable facades. J. Build. Eng.
**2018**, 19, 181–190. [Google Scholar] [CrossRef] - Lewandowska, A.; Branowsk, B.; Joachimiak-Lechman, K.; Kurczewski, P.; Selech, J.; Zablocki, M. Sustainable Design: A Case of Environmental and Cost Life Cycle Assessment of a Kitchen Designed for Seniors and Disabled People. Sustainability
**2017**, 9, 1329. [Google Scholar] [CrossRef] - He, B.; Niu, Y.; Hou, S.; Li, F. Sustainable design from functional domain to physical domain. J. Clean. Prod.
**2018**, 197, 1296–1306. [Google Scholar] [CrossRef] - Ping, L.X. Application of green concept in mechanical design and manufacture. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 94, p. 012128. [Google Scholar]
- Halstenberg, F.A.; Buchert, T.; Bonvoisin, J.; Lindow, K.; Stark, R. Target-oriented Modularization-Addressing Sustainability Design Goals in Product Modularization. Procedia CIRP
**2015**, 29, 603–608. [Google Scholar] [CrossRef] - Go, T.F.; Wahab, D.A.; Hishamuddin, H. Multiple generation life-cycles for product sustainability: The way forward. J. Clean. Prod.
**2015**, 95, 16–29. [Google Scholar] [CrossRef] - Rosen, M.A.; Kishawy, H.A. Sustainable Manufacturing and Design: Concepts, Practices and Needs. Sustainability
**2012**, 4, 154–174. [Google Scholar] [CrossRef] [Green Version] - Zhang, C.; Xie, G.; Liu, C.; Lu, C. Assessment of soil erosion under woodlands using USLE in China. Front. Earth Sci.
**2011**, 5, 150–161. [Google Scholar] [CrossRef] - Chiu, M.C.; Chu, C.H. Review of sustainable product design from life cycle perspectives. Int. J. Precis. Eng. Manuf.
**2012**, 13, 1259–1272. [Google Scholar] [CrossRef] - Sonego, M.; Soares Echeveste, M.E.; Debarba, H.G. The role of modularity in sustainable design: A systematic review. J. Clean. Prod.
**2018**, 176, 196–209. [Google Scholar] [CrossRef] - Jilcha, K.; Kitaw, D. Industrial occupational safety and health innovation for sustainable development. Eng. Sci. Technol.
**2016**, 20, 372–380. [Google Scholar] [CrossRef] - Bachman, L.R. Sustainable Design and Postindustrial Society: Our Ethical and Aesthetic Crossroads. Enquiry
**2016**, 13, 30–38. [Google Scholar] [CrossRef] - Cimatti, B.; Campana, G.; Carluccio, L. Eco Design and Sustainable Manufacturing in Fashion: A Case Study in the Luxury Personal Accessories Industry. Procedia Manuf.
**2017**, 8, 393–400. [Google Scholar] [CrossRef] - Beck, L.A. New as Renewal: A Framework for Adaptive Reuse in the Sustainable Paradigm. Master’s Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2014. [Google Scholar]
- Raoufi, K.; Park, K.; Hasan Khan, M.T.; Haapala, K.R.; Psenka, C.E.; Jackson, K.L.; Okudan Kremer, G.E. A Cyber Learning Platform for Enhancing Undergraduate Engineering Education in Sustainable Product Design. J. Clean. Prod.
**2018**, 211, 730–741. [Google Scholar] [CrossRef] - Yan, J.; Feng, C. Sustainable design-oriented product modularity combined with 6R concept: A case study of rotor laboratory bench. Clean Technol. Environ. Policy
**2014**, 16, 95–109. [Google Scholar] [CrossRef] - Qian, X.; Zhang, H.C. Design for Environment: An Environmentally Conscious Analysis Model for Modular Design. IEEE Trans. Electron. Packag. Manuf.
**2009**, 32, 164–175. [Google Scholar] [CrossRef] - Foley, J.T.; Cochran, D.S. Manufacturing System Design Decomposition: An Ontology for Data Analytics and System Design Evaluation. Procedia CIRP
**2017**, 60, 175–180. [Google Scholar] [CrossRef] - Zhang, X.; Zhao, Y.; Sun, Q.; Wang, C. Decomposition and Attribution Analysis of Industrial Carbon Intensity Changes in Xinjiang. China. Sustainability
**2017**, 9, 459. [Google Scholar] [CrossRef] - Lumsakul, P.; Sheldrick, L.; Rahimifard, S. The Sustainable Co-Design of Products and Production Systems. Procedia Manuf.
**2018**, 21, 854–861. [Google Scholar] [CrossRef] - Saaty, T.L. The Analytical Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.J. Decision Making in Complex Environments, The Analytical Hierarchy Process for Decision Making with Dependence and Dependence and Feedback; RWS Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Saaty, T.L. Fundamentals of analytic network process. In Proceedings of the International Symposium on the Analytic Hierarchy Process, Japan, Kobe, 12–14 August 1999; pp. 348–379. [Google Scholar]
- Keršulienė, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag.
**2010**, 11, 243–258. [Google Scholar] [CrossRef] - Ginevicius, R. A New Determining Method for the Criteria Weights in Multi-Criteria Evaluation. Int. J. Inf. Technol. Decis. Mak.
**2011**, 10, 1067–1095. [Google Scholar] [CrossRef] - Rezaei, J. Best-worst multi-criteria decision-making method. Omega
**2015**, 53, 49–57. [Google Scholar] [CrossRef] - Hashemkhani Zolfani, S.; Yazdani, M.; Zavadskas, E.K. An extended stepwise weight assessment ratio analysis (SWARA) method for improving criteria prioritization process. Soft Comput.
**2018**, 22, 7399–7405. [Google Scholar] [CrossRef] - Pamucar, D.; Stevic, Z.; Sremac, S. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry
**2018**, 10, 393. [Google Scholar] [CrossRef] - Govindan, K. Application of multi-criteria decision making/operations research techniques for sustainable management in mining and minerals. Resour. Policy
**2015**, 46, 1–5. [Google Scholar] [CrossRef] - Zavadskas, E.K.; Govindan, K.; Antucheviciene, J.; Turskis, Z. Hybrid multiple criteria decision-making methods: A review of applications for sustainability issues. Econ. Res.
**2016**, 29, 857–887. [Google Scholar] [CrossRef] - Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bancal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev.
**2017**, 69, 596–609. [Google Scholar] [CrossRef] - Siksnelyte, I.; Zavadskas, E.K.; Streimikiene, D.; Sharma, D. An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues. Energies
**2018**, 11, 2754. [Google Scholar] [CrossRef] - Shen, K.Y.; Tzeng, G.H. Advances in Multiple Criteria Decision Making for Sustainability: Modeling and Applications. Sustainability
**2018**, 10, 1600. [Google Scholar] [CrossRef] - Badri Ahmadi, H.; Kusi-Sarpong, S.; Rezaei, J. Assessing the social sustainability of supply chains using Best Worst Method. Resour. Conserv. Recycl.
**2017**, 126, 99–106. [Google Scholar] [CrossRef] - Zolfani, S.H.; Saparauskas, J. New Application of SWARA Method in Prioritizing Sustainability Assessment Indicators of Energy System. Eng. Econ.
**2013**, 24, 408–414. [Google Scholar] [CrossRef] - Hashemkjani Zolfani, S.; Bahrami, M. Investment prioritizing in high tech industries based on SWARA-COPRAS approach. Technol. Econ. Dev. Econ.
**2014**, 20, 534–553. [Google Scholar] [CrossRef] - Ghorshi Nezhad, M.R.; Hashemkhani Zolfani, S.; Moztarzadeh, F.; Zavadskas, E.K.; Bahrami, M. Planning the priority of high tech industries based on SWARA-WASPAS methodology: The case of the nanotechnology industry in Iran. Econ. Res.
**2015**, 28, 1111–1137. [Google Scholar] [CrossRef] [Green Version] - Hashemkhani Zolfani, S.; Salimi, J.; Maknoon, R.; Kildiene, S. Technology foresight about R&D projects selection; application of SWARA method at the policy making level. Eng. Econ.
**2015**, 26, 571–580. [Google Scholar] - Mardani, A.; Nilashi, M.; Zakuan, N.; Loganathan, N.; Soheilirad, S.; Saman, M.Z.M.; Ibrahim, O. A systematic review and meta-Analysis of SWARA and WASPAS methods: Theory and applications with recent fuzzy developments. Appl. Soft Comput.
**2017**, 57, 265–292. [Google Scholar] [CrossRef] - Sadjadia, S.J.; Karimi, M. Best-worst multi-criteria decision-making method: A robust approach. Decis. Sci. Lett.
**2018**, 7, 323–340. [Google Scholar] [CrossRef] - Gupta, H.; Barua, M.K. Identifying enablers of technological innovation for Indian MSMEs using best–worst multi criteria decision making method. Technol. Forecast. Soc. Chang.
**2016**, 107, 69–79. [Google Scholar] [CrossRef] - Yadav, G.; Mangla, S.K.; Luthra, S.; Jakhar, S. Hybrid BWM-ELECTRE-based decision framework for effective offshore outsourcing adoption: A case study. Int. J. Prod. Res.
**2018**, 56, 6259–6278. [Google Scholar] [CrossRef] - Rezaei, J.; Wang, J.; Tavasszy, L. Linking supplier development to supplier segmentation using Best Worst Method. Expert Syst. Appl.
**2015**, 42, 9152–9164. [Google Scholar] [CrossRef] - Chitsaz, N.; Azarivand, A. Water Scarcity Management in Arid Regions Based on an Extended Multiple Criteria Technique. Water Resour. Manag.
**2016**, 31, 233–250. [Google Scholar] [CrossRef] - Rezaei, J.; Hemmes, A.; Tavasszy, L.A. Multi-criteria decision-making for complex bundling configurations in surface transportation of air freight. J. Air Transp. Manag.
**2017**, 61, 95–105. [Google Scholar] [CrossRef] - Ren, J.; Liang, H.; Chan, F.T.S. Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method. Technol. Forecast. Soc. Chang.
**2017**, 116, 29–39. [Google Scholar] [CrossRef] - Rezaei, J.; van Roekel, W.S.; Tavasszy, L.A. Measuring the relative importance of the logistics performance index indicators using Best Worst Method. Transp. Policy
**2018**, 68, 158–169. [Google Scholar] [CrossRef] - Van de Kaan, G.; Janssen, M.; Rezaei, J. Standards battles for business-to-government data exchange: Identifying success factors for standard dominance using the Best Worst Method. Technol. Forecast. Soc. Chang.
**2018**, 137, 182–189. [Google Scholar] [CrossRef] - Nawaz, F.; Asadabadi, M.R.; Janjua, N.K.; Hussain, O.K.; Chang, E.; Saberi, M. An MCDM method for cloud service selection using a Markov chain and the best-worst method. Knowl.-Based Syst.
**2018**, 159, 120–131. [Google Scholar] [CrossRef] - Salimi, N.; Rezaei, J. Measuring efficiency of university-industry Ph.D. projects using best worst method. Scientometrics
**2016**, 109, 1911–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rezaei, J. Best-worst Multi-criteria Decision-Making Method: Some Properties and a Linear Model. Omega
**2016**, 62, 126–130. [Google Scholar] [CrossRef] - Khodadadi, M.R.; Hashemkhani Zolfani, S.; Yazdani, M.; Zavadskas, E.K. A hybrid MADM analysis in evaluating process of chemical wastewater purification regarding to advance oxidation processes. J. Environ. Eng. Landsc. Manag.
**2017**, 25, 277–288. [Google Scholar] [CrossRef] - Jamali, G.; Karimi Asl, E.; Hashemkhani Zolfani, S.; Saparauskas, J. Analysing large supply chain management competitive strategies in Iranian cement industries. E+M Ekon. Manag.
**2017**, 20, 70–84. [Google Scholar] [CrossRef] - Hashemkhani Zolfani, S.; Pourhossein, M.; Yazdani, M.; Zavadskas, E.K. Evaluating construction projects of hotels based on environmental sustainability with MCDM framework. Alex. Eng. J.
**2018**, 57, 357–365. [Google Scholar] [CrossRef] - Hong, H.; Panahi, M.; Shirzadi, A.; Ma, T.; Liu, J.; Zhu, A.; Chen, W.; Kougias, I.; Kazakis, N. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Sci. Total Environ.
**2018**, 621, 1124–1141. [Google Scholar] [CrossRef] - Zarbakhshnia, N.; Soleimani, H.; Ghaderi, H. Sustainable third-party reverse logistics provider evaluation and selection using fuzzy SWARA and developed fuzzy COPRAS in the presence of risk criteria. Appl. Soft Comput.
**2018**, 65, 307–319. [Google Scholar] [CrossRef] - Eghbali-Zarch, M.; Tavakkoli-Moghaddam, R.; Esfahanian, F.; Sepehri, M.M.; Azaron, A. Pharmacological therapy selection of type 2 diabetes based on the SWARA and modified MULTIMOORA methods under a fuzzy environment. Artif. Intell. Med.
**2018**, 87, 20–33. [Google Scholar] [CrossRef] - Vesković, S.; Stević, Z.; Stojić, G.; Vasiljević, M.; Milinković, S. Evaluation of the railway management model by using a new integrated model DELPHI-SWARA-MABAC. Decis. Mak.
**2018**, 1, 34–50. [Google Scholar] [CrossRef] - Heidary Dahooie, J.; Beheshti Jazan Abadi, E.; Salar Vanaki, A. Competency-based IT personnel selection using a hybrid SWARA and ARAS-G methodology. Hum. Factors Ergon. Manuf. Serv. Ind.
**2018**, 28, 5–16. [Google Scholar] - Keršulienė, V.; Turskis, Z. Integrated fuzzy multiple criteria decision making model for architect selection. Technol. Econ. Dev. Econ.
**2011**, 17, 645–666. [Google Scholar] [CrossRef] - Vafaeipour, M.; Hashemkhani Zolfani, S.; Varzandeh, M.H.; Derakhti, A.; Eshkalag, M.K. Assessment of regions priority for implementation of solar projects in Iran: New application of a hybrid multi-criteria decision making approach. Energy Convers. Manag.
**2014**, 86, 653–663. [Google Scholar] [CrossRef] - Stanujkic, D.; Karabasevic, D.; Zavadskas, E.K. A Framework for the Selection of a Packaging Design Based on the SWARA Method. Eng. Econ.
**2015**, 26, 181–187. [Google Scholar] [CrossRef] - ESCAP. Integrating the Three Dimensions of Sustainable Development: A Framework and Tools; ST/ESCAP/2737; United Nations Publication: New York, NY, USA, 2015. [Google Scholar]

Dimension | Definitions | References | |

C_{1} | Economic | ||

C_{1-1} | Initial costs | All primary costs related to the new production | Sahamir et al. [20]; Moghtadernejad et al. [21]; |

C_{1-2} | Material cost | Cost of selected materials | Lewandowska et al. [22]; He et al. [23]; |

C_{1-3} | Energy consumption | The rate of energy consumption in production and in case if it needs to work based on energy | Ping [24]; Sahamir et al. [20] |

C_{1-4} | Maintenance cost | It is related to materials and quality of design and manufacturing quality | Halstenberg et al. [25]; Go et al. [26] |

C_{1-5} | Operation cost | It depends to the level of technology and related things | Rosen & Kishawy [27] |

C_{1-6} | Variety of suppliers | It is also related to the type of selected materials because resources are totally dependent | Zhang et al. [28]; Chiu & Chu [29]; Sonego et al. [30] |

C_{2} | Social | ||

C_{2-1} | Safety and security | Safety and security for both workers and consumer | Jilcha & Kitaw [31]; He et al. [23]; Sahamir et al. [20] |

C_{2-2} | Structure parameters | It is related to the topics such as: suitable size for consumers, ergonomic aspects | He et al. [23] |

C_{2-3} | Aesthetics | The quality of appearance of final products based on manufacturing design | Bachman [32]; Cimatti et al. [33]; Moghtadernejad et al. [21] |

C_{2-4} | Functionality | Possibility of do it by consumers | Sonego et al. [30] |

C_{3} | Environment | ||

C_{3-1} | Recyclable | Rate of using recyclable materials | He et al. [23]; Sonego et al. [30] |

C_{3-2} | Reuse | Easy disassembly for reusing | Rosen & Kishawy [27]; Beck [34]; Sonego et al. [30] |

C_{3-3} | Sustainable suppliers | Access to the sustainable suppliers and decreasing carbon footprint | Raoufi et al. [35] |

C_{3-4} | Reparability | Easy to be repaired which can have social and economic advantages | Zhang et al. [28]; Yan & Feng [36] |

C_{3-5} | Lifespan | Life cycle of the product based on manufacturing design | Qian & Zhang [37]; He et al. [23] |

C_{3-6} | Decomposition | Rate of being environmentally friendly | Foley & Cochran [38]; Zhang et al. [39] |

C_{3-7} | Upgrade possibility | Upgrade possibility in the future | Lumsakul et al. [40]; Sonego et al. [30] |

a_{BW} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

CI (max ${{\displaystyle \xi}}^{*}$) | 0 | 0.44 | 1.00 | 1.63 | 2.30 | 3.00 | 3.73 | 4.47 | 5.23 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

SWARA | 0.075 | 0.064 | 0.045 | 0.041 | 0.058 | 0.05 |

BWM | 0.121 | 0.077 | 0.031 | 0.014 | 0.051 | 0.039 |

Priority based on SWARA | 1 | 2 | 5 | 6 | 3 | 4 |

Priority based on BWM | 1 | 2 | 5 | 6 | 3 | 4 |

K_{si} (BWM) | 0.101 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

SWARA | 0.078 | 0.065 | 0.045 | 0.039 | 0.057 | 0.049 |

BWM | 0.144 | 0.060 | 0.030 | 0.018 | 0.045 | 0.036 |

Priority based on SWARA | 1 | 2 | 5 | 6 | 3 | 4 |

Priority based on BWM | 1 | 2 | 5 | 6 | 3 | 4 |

K_{si} (BWM) | 0.108 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

SWARA | 0.075 | 0.068 | 0.043 | 0.037 | 0.059 | 0.051 |

BWM | 0.125 | 0.078 | 0.026 | 0.014 | 0.052 | 0.039 |

Priority based on SWARA | 1 | 2 | 5 | 6 | 3 | 4 |

Priority based on BWM | 1 | 2 | 5 | 6 | 3 | 4 |

K_{si} (BWM) | 0.089 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

SWARA | 0.072 | 0.066 | 0.043 | 0.039 | 0.060 | 0.052 |

BWM | 0.134 | 0.081 | 0.027 | 0.017 | 0.041 | 0.033 |

Priority based on SWARA | 1 | 2 | 5 | 6 | 3 | 4 |

Priority based on BWM | 1 | 2 | 5 | 6 | 3 | 4 |

K_{si} (BWM) | 0.087 |

Weights | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} | C_{1-5} | C_{1-6} |

SWARA | 0.078 | 0.068 | 0.043 | 0.039 | 0.057 | 0.047 |

BWM | 0.143 | 0.061 | 0.031 | 0.015 | 0.046 | 0.037 |

Priority based on SWARA | 1 | 2 | 5 | 6 | 3 | 4 |

Priority based on BWM | 1 | 2 | 5 | 6 | 3 | 4 |

K_{si} (BWM) | 0.124 |

Weight | C_{2-1} | C_{2-2} | C_{2-3} | C_{2-4} |

SWARA | 0.105 | 0.088 | 0.076 | 0.064 |

BWM | 0.151 | 0.091 | 0.061 | 0.030 |

Priority based on SWARA | 1 | 2 | 3 | 4 |

Priority based on BWM | 1 | 2 | 3 | 4 |

K_{si} (BWM) | 0.091 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} |

SWARA | 0.100 | 0.091 | 0.076 | 0.066 |

BWM | 0.186 | 0.077 | 0.046 | 0.023 |

Priority based on SWARA | 1 | 2 | 3 | 4 |

Priority based on BWM | 1 | 2 | 3 | 4 |

K_{si} (BWM) | 0.140 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} |

SWARA | 0.103 | 0.086 | 0.078 | 0.065 |

BWM | 0.183 | 0.071 | 0.053 | 0.025 |

Priority based on SWARA | 1 | 2 | 3 | 4 |

Priority based on BWM | 1 | 2 | 3 | 4 |

K_{si} (BWM) | 0.092 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} |

SWARA | 0.106 | 0.092 | 0.074 | 0.061 |

BWM | 0.178 | 0.072 | 0.054 | 0.028 |

Priority based on SWARA | 1 | 2 | 3 | 4 |

Priority based on BWM | 1 | 2 | 3 | 4 |

K_{si} (BWM) | 0.117 |

Weight | C_{1-1} | C_{1-2} | C_{1-3} | C_{1-4} |

SWARA | 0.101 | 0.092 | 0.076 | 0.064 |

BWM | 0.162 | 0.096 | 0.048 | 0.026 |

Priority based on SWARA | 1 | 2 | 3 | 4 |

Priority based on BWM | 1 | 2 | 3 | 4 |

K_{si} (BWM) | 0.092 |

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

SWARA | 0.061 | 0.045 | 0.032 | 0.040 | 0.053 | 0.074 | 0.028 |

BWM | 0.070 | 0.035 | 0.023 | 0.028 | 0.047 | 0.118 | 0.014 |

Priority based on SWARA | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Priority based on BWM | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

K_{si} (BWM) | 0.066 |

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

SWARA | 0.062 | 0.045 | 0.033 | 0.039 | 0.050 | 0.075 | 0.030 |

BWM | 0.070 | 0.035 | 0.028 | 0.028 | 0.047 | 0.112 | 0.014 |

Priority based on SWARA | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Priority based on BWM | 2 | 4 | 5 | 5 | 3 | 1 | 7 |

K_{si} (BWM) | 0.084 |

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

SWARA | 0.062 | 0.045 | 0.033 | 0.039 | 0.050 | 0.075 | 0.030 |

BWM | 0.070 | 0.035 | 0.028 | 0.028 | 0.047 | 0.112 | 0.014 |

Priority based on SWARA | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Priority based on BWM | 2 | 4 | 5 | 5 | 3 | 1 | 7 |

K_{si} (BWM) | 0.084 |

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

SWARA | 0.064 | 0.046 | 0.034 | 0.039 | 0.051 | 0.073 | 0.028 |

BWM | 0.072 | 0.036 | 0.021 | 0.024 | 0.048 | 0.121 | 0.012 |

Priority based on SWARA | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Priority based on BWM | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

K_{si} (BWM) | 0.072 |

Weight | C_{3-1} | C_{3-2} | C_{3-3} | C_{3-4} | C_{3-5} | C_{3-6} | C_{3-7} |

SWARA | 0.059 | 0.047 | 0.034 | 0.041 | 0.054 | 0.071 | 0.029 |

BWM | 0.058 | 0.035 | 0.022 | 0.025 | 0.044 | 0.136 | 0.014 |

Priority based on SWARA | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

Priority based on BWM | 2 | 4 | 6 | 5 | 3 | 1 | 7 |

K_{si} (BWM) | 0.116 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zolfani, S.H.; Chatterjee, P.
Comparative Evaluation of Sustainable Design Based on Step-Wise Weight Assessment Ratio Analysis (SWARA) and Best Worst Method (BWM) Methods: A Perspective on Household Furnishing Materials. *Symmetry* **2019**, *11*, 74.
https://doi.org/10.3390/sym11010074

**AMA Style**

Zolfani SH, Chatterjee P.
Comparative Evaluation of Sustainable Design Based on Step-Wise Weight Assessment Ratio Analysis (SWARA) and Best Worst Method (BWM) Methods: A Perspective on Household Furnishing Materials. *Symmetry*. 2019; 11(1):74.
https://doi.org/10.3390/sym11010074

**Chicago/Turabian Style**

Zolfani, Sarfaraz Hashemkhani, and Prasenjit Chatterjee.
2019. "Comparative Evaluation of Sustainable Design Based on Step-Wise Weight Assessment Ratio Analysis (SWARA) and Best Worst Method (BWM) Methods: A Perspective on Household Furnishing Materials" *Symmetry* 11, no. 1: 74.
https://doi.org/10.3390/sym11010074