Positive Solutions of a Fractional Thermostat Model with a Parameter
Abstract
:1. Introduction
2. Preliminaries
- (i)
- is continuous;
- (ii)
- ;
- (iii)
- (H1)
- f is nondecreasing on ;
- (H2)
- there exists a function continuous nondecreasing, such that for , and is strictly increasing on and .
3. Main Results
- (i)
- is nondecreasing with respect to λ;
- (ii)
- ;
- (iii)
- as .
Author Contributions
Funding
Conflicts of Interest
References
- Infante, G.; Webb, J.R.L. Loss of positivity in a nonlinear scalar heat equation. NoDEA Nonlinear Differ. Equ. Appl. 2006, 13, 249–261. [Google Scholar] [CrossRef]
- Webb, J.R.L. Multiple positive solutions of some nonlinear heat flow problems. Discret. Contin. Dyn. Syst. 2005, 2005, 895–903. [Google Scholar]
- Guidotti, P.; Merino, S. Gradual loss of positivity and hidden invariant cones in a scalar heat equation. Differ. Integral Equ. 2000, 13, 1551–1568. [Google Scholar]
- Webb, J.R.L. Existence of positive solutions for a thermostat model. Nonlinear Anal. Real World Appl. 2012, 13, 923–938. [Google Scholar] [CrossRef]
- Webb, J.R.L. Remarks on a non-local boundary value problem. Nonlinear Anal. 2010, 72, 1075–1077. [Google Scholar] [CrossRef]
- Infante, G. Positive solutions of nonlocal boundary value problems with singularities. Discret. Contin. Dyn. Syst. 2009, 2009, 377–384. [Google Scholar]
- Infante, G.; Webb, J.R.L. Nonlinear non-local boundary-value problems and perturbed Hammerstein integral equations. Proc. Edinb. Math. Soc. 2006, 49, 637–656. [Google Scholar] [CrossRef]
- Palamides, P.K.; Infante, G.; Pietramala, P. Nontrivial solutions of a nonlinear heat flow problem via Sperner’s lemma. Appl. Math. Lett. 2009, 22, 1444–1450. [Google Scholar] [CrossRef]
- Infante, G.; Pietramala, P.; Tenuta, M. Existence and localization of positive solutions for a nonlocal BVP arising in chemical reactor theory. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2245–2251. [Google Scholar] [CrossRef]
- Cianciaruso, F.; Infante, G.; Pietramala, P. Solutions of perturbed Hammerstein integral equations with applications. Nonlinear Anal. Real World Appl. 2017, 33, 317–347. [Google Scholar] [CrossRef] [Green Version]
- Calamai, A.; Infante, G. Nontrivial solutions of boundary value problems for second-order functional differential equations. Ann. Mat. Pura Appl. 2016, 195, 741–756. [Google Scholar] [CrossRef]
- Infante, G.; Pietramala, P.; Tojo, F.A.F. Non-trivial solutions of local and non-local Neumann boundary-value problems. Proc. R. Soc. Edinb. Sect. A 2016, 146, 337–369. [Google Scholar] [CrossRef]
- Cabada, A.; Infante, G.; Tojo, F.A.F. Nonzero solutions of perturbed Hammerstein integral equations with deviated arguments and applications. Topol. Methods Nonlinear Anal. 2016, 47, 265–287. [Google Scholar] [CrossRef]
- Li, Z. Existence of positive solutions of superlinear second-order Neumann boundary value problem. Nonlinear Anal. 2010, 72, 3216–3221. [Google Scholar] [CrossRef]
- Ma, R.; An, Y. Global structure of positive solutions for superlinear second order m-point boundary value problems. Topol. Methods Nonlinear Anal. 2009, 34, 279–290. [Google Scholar] [CrossRef]
- Cahlon, B.; Schmidt, D.; Shillor, M.; Zou, X. Analysis of thermostat models. Eur. J. Appl. Math. 1997, 8, 437–455. [Google Scholar] [CrossRef]
- Ji, D.; Bai, Z.; Ge, W. The existence of countably many positive solutions for singular multipoint boundary value problems. Nonlinear Anal. 2010, 72, 955–964. [Google Scholar] [CrossRef]
- Nieto, J.J.; Pimentel, J. Positive solutions of a fractional thermostat model. Bound. Value Probl. 2013, 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Cabada, A.; Infante, G. Positive solutions of a nonlocal Caputo fractional BVP. Dyn. Syst. Appl. 2014, 23, 715–722. [Google Scholar]
- Shen, C.; Zhou, H.; Yang, L. Existence and nonexistence of positive solutions of a fractional thermostat model with a parameter. Math. Methods Appl. Sci. 2016, 39, 4504–4511. [Google Scholar] [CrossRef]
- Senapati, T.; Dey, L.K. Relation-theoretic metrical fixed-point results via w-distance with applications. J. Fixed Point Theory Appl. 2017, 19, 2945–2961. [Google Scholar] [CrossRef]
- Cabrera, I.J.; Rocha, J.; Sadarangani, K.B. Lyapunov type inequalities for a fractional thermostat model. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Math. 2018, 112, 17–24. [Google Scholar] [CrossRef]
- Hao, X.; Sun, H.; Liu, L. Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval. Math. Methods Appl. Sci. 2018, 41, 6984–6996. [Google Scholar] [CrossRef]
- Hao, X. Positive solution for singular fractional differential equations involving derivatives. Adv. Differ. Equ. 2016, 2016, 139. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L.; Wang, H. Existence, multiplicity, and dependence on a parameter for a periodic boundary value problem. J. Differ. Equ. 2008, 245, 1185–1197. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Wang, H. Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions. Open Math. 2018, 16, 581–596. [Google Scholar] [CrossRef]
- Novozhenova, O.G. Life and science of Alexey N. Gerasimov. On the linear operators, elastic viscosity, elevterous and fractional derivatives. arXiv, 2018; arXiv:1808.04397. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman: Harlow, UK, 1994. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: Boston, MA, USA, 1988. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Zhang, L. Positive Solutions of a Fractional Thermostat Model with a Parameter. Symmetry 2019, 11, 122. https://doi.org/10.3390/sym11010122
Hao X, Zhang L. Positive Solutions of a Fractional Thermostat Model with a Parameter. Symmetry. 2019; 11(1):122. https://doi.org/10.3390/sym11010122
Chicago/Turabian StyleHao, Xinan, and Luyao Zhang. 2019. "Positive Solutions of a Fractional Thermostat Model with a Parameter" Symmetry 11, no. 1: 122. https://doi.org/10.3390/sym11010122