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Abstract

:

We study the existence, multiplicity, and uniqueness results of positive solutions for a fractional thermostat model. Our approach depends on the fixed point index theory, iterative method, and nonsymmetry property of the Green function. The properties of positive solutions depending on a parameter are also discussed.
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1. Introduction


In this paper, we investigate a fractional nonlocal boundary value problem (BVP)


D0+αcx(t)+λg(t)f(x(t))=0,t∈(0,1),x′(0)=0,βcD0+α-1x(1)+x(η)=0,



(1)




where 1<α≤2,β>0,0≤η≤1,βΓ(α)>(1-η)α-1,cD0+α is the Gerasimov–Caputo fractional derivative of order α, λ>0 is a parameter, f∈C([0,+∞),[0,+∞)),g∈C((0,1),[0,+∞)), and 0<∫01g(t)dt<+∞.



One motivation is that the thermostat model


x″(t)+g(t)f(t,x(t))=0,t∈(0,1),x′(0)=0,βx′(1)+x(η)=0,



(2)




which is a special case with α=2 and λ=1, has been discussed by Infante and Webb [1,2]. They established multiplicity results of BVP (2). These types of problems have been investigated by various scholars, see References [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17].



Recently, the thermostat model was extended to the fractional case


D0+αcx(t)+f(t,x(t))=0,t∈(0,1),α∈(1,2],x′(0)=0,βcD0+α-1x(1)+x(η)=0,



(3)




where β>0,0≤η≤1,f∈C([0,1]×[0,+∞),[0,+∞)). Nieto and Pimentel [18] proved the existence of positive solutions based on the Krasnosel’skii fixed point theorem. Cabada and Infante [19] discussed the multiplicity results of positive solutions for BVP (3).



In Reference [20], Shen, Zhou, and Yang studied a fractional thermostat model


D0+αcx(t)+λf(t,x(t))=0,t∈(0,1),1<α≤2,x′(0)=0,βcD0+α-1x(1)+x(η)=0,








where β>0,0≤η≤1,βΓ(α)>(1-η)α-1,λ>0, f:[0,1]×[0,+∞)→[0,+∞) is continuous. The authors obtained intervals of parameter λ that correspond to at least one and no positive solutions. Similar fractional thermostat problems have been studied in References [21,22,23,24].



In this paper, we deal with positive solutions for the fractional thermostat model (1). The existence, multiplicity, and uniqueness results are established by the fixed point index theory and iterative method. The properties of positive solutions depending on a parameter are also discussed. Some of the ideas in this paper are from References [25,26]. Let us remark that the definition of the Gerasimov–Caputo derivative was first introduced and applied by Gerasimov in 1947 and then by Caputo in 1967, see for example, the overview by Novozhenova in Reference [27]. For details on the theory and applications of the fractional derivatives and integrals and fractional differential equations, see References [28,29,30,31].




2. Preliminaries


Lemma 1 ([20]).

Given u(t)∈C(0,1)∩L1(0,1), the solution of the problem


D0+αcx(t)+u(t)=0,t∈(0,1),x′(0)=0,βcD0+α-1x(1)+x(η)=0








is


x(t)=∫01G(t,s)u(s)ds,t∈[0,1],








where


G(t,s)=β-(t-s)α-1Γ(α)+(η-s)α-1Γ(α),0≤s≤η,s≤t,β+(η-s)α-1Γ(α),0≤s≤η,s≥t,β-(t-s)α-1Γ(α),η≤s≤1,s≤t,β,η≤s≤1,s≥t,








and G(t,s) satisfies:

	(i) 

	
G(t,s):[0,1]×[0,1]→(0,+∞) is continuous;




	(ii) 

	
∂∂tG(t,s)≤0,t,s∈[0,1];




	(iii) 

	
γG¯=G̲≤G(1,s)≤G(t,s)≤G(0,s)≤G¯,t,s∈[0,1],






where


γ=βΓ(α)-(1-η)α-1βΓ(α)+ηα-1,G̲=βΓ(α)-(1-η)α-1Γ(α),G¯=βΓ(α)+ηα-1Γ(α).













Denote E=C[0,1] and ∥x∥=supt∈[0,1]|x(t)|. We define the cone


P={x∈E:x(t)≥0,inft∈[0,1]x(t)≥γ∥x∥}.











For any 0<r<+∞, let Pr={x∈P:∥x∥<r}. We define T:(0,+∞)×E→E as


T(λ,x)(t)=λ∫01G(t,s)g(s)f(x(s))ds,t∈[0,1].











It is obvious from Lemma 1 that if x∈P is a fixed point of operator T, then x is a positive solution of Problem (1). By regularity arguments, we can show that T is completely continuous and T(P)⊂P.



Define the linear operator L:E→E by


Lx(t)=∫01G(t,s)g(s)x(s)ds,t∈[0,1].











By the Krein–Rutman theorem, we see that the spectral radius r(L) of the operator L is positive, and L has positive eigenfunction φ1 corresponding to its first eigenvalue μ1=(r(L))-1.



Lemma 2 ([32]).

Let P be a cone in Banach space E. Suppose that T:P→P is a completely continuous operator. (i) If Tu≠μu for any u∈∂Pr and μ≥1, then i(T,Pr,P)=1. (ii) If Tu≠u and ∥Tu∥≥∥u∥ for any u∈∂Pr, then i(T,Pr,P)=0.



Denote


f0=lims→0f(s)s,f∞=lims→∞f(s)s,A=∫01G(0,s)g(s)ds,l=mins∈(0,∞)f(s)s.











We assume that:

	(H1)

	
f is nondecreasing on [0,+∞);




	(H2)

	
there exists a function ϕ:(0,1]→[0,1] continuous nondecreasing, such that f(κx)≥ϕ(κ)f(x) for 0<κ<1,x>0, and F(κ):=κϕ(κ) is strictly increasing on (0,1] and F(1)=1.











Lemma 3.

Suppose that (H1) holds, f0=∞ and l>0. If 0<λ1<λ2<1lA, then there exist x1,x2∈P∖{θ},x1≤x2, such that T(λ1,x1)(t)=x1(t) and T(λ2,x2)(t)=x2(t).





Proof. 

Assume s0∈(0,∞) such that f(s0)=ls0. Since 0<λ1<λ2<1lA, we have l<1λ2A<1λ1A. We define


x0(t)=s0A∫01G(t,s)g(s)ds,t∈[0,1],








then


∥x0∥=x0(0)=s0,x0(t)≥s0A∫01γG(0,s)g(s)ds=γ∥x0∥,t∈[0,1].











Therefore, x0∈P and ∥x0∥=s0. Direct computations yield


T(λ1,x0)(t)=λ1∫01G(t,s)g(s)f(x0(s))ds≤λ1∫01G(t,s)g(s)f(∥x0∥)ds=λ1ls0∫01G(t,s)g(s)ds<s0A∫01G(t,s)g(s)ds=x0(t),t∈[0,1].











Define


x11(t)=T(λ1,x0)(t),x1j(t)=T(λ1,x1j-1)(t)=Tj(λ1,x0)(t),j=2,3,⋯,t∈[0,1].











Direct calculations show that x0>x11>x12>⋯>x1j>x1j+1>⋯≥θ. Hence, sequence {x1j}j=1∞ is decreasing and bounded from below, limj→∞x1j(t) exists and convergence is uniform for t∈[0,1]. Assume that limj→∞x1j=x1, we claim that x1(t)>0. Otherwise, since x1∈P, x1(t)=0, i.e., limj→∞x1j(t)=0,t∈[0,1], and hence from x1j∈P, we deduce ∥x1j∥→0. Since f0=∞, for any H>1λ1γA, there is integral Z>0 such that for j>Z, we have f(x1j(t))>Hx1j(t), and hence


x1j+1(0)=λ1∫01G(0,s)g(s)f(x1j(s))ds>λ1Hγ∫01G(0,s)g(s)∥x1j∥ds≥x1j(0)λ1HγA>x1j(0).











The contradiction shows that x1∈P∖{θ} and x1=T(λ1,x1).



Similarly, from x21(t)=T(λ2,x0)(t) and x2j(t)=T(λ2,x2j-1)(t),j=2,3,⋯, we deduce


x0>x21>x22>⋯>x2j>x2j+1>⋯≥θ,








limj→∞x2j=x2∈P∖{θ}, and x2=T(λ2,x2). It follows from x11=T(λ1,x0)<T(λ2,x0)=x21 and the monotonicity of f that x1j≤x2j,j=2,3,⋯. Therefore, x1≤x2. ☐





Lemma 4.

If f∞=∞, then for any μ>0, the set Sμ={x∈P:T(λ,x)=x,λ∈[μ,∞)} is bounded.





Proof. 

Otherwise, there exists xn∈Sμ corresponding to λn∈[μ,∞) such that


T(λn,xn)=xn,limn→∞∥xn∥=∞.











Because f∞=∞, there is X>0 such that f(s)>Hs for s>X, where H>1μγA. Since limn→∞∥xn∥=∞, there exists N0>0 such that ∥xn∥>Xγ for n>N0, and xn(t)≥γ∥xn∥>X,t∈[0,1]. Then, for any n>N0, we obtain


∥xn∥>λn∫01G(0,s)g(s)Hxn(s)ds>μHγ∥xn∥A>∥xn∥,








which is absurd, and hence Sμ is bounded.  ☐





Lemma 5.

Assume that (H1) holds, and that f0=f∞=∞. Then, T admits a fixed point for λ=1lA.





Proof. 

Choosing a sequence 0<λ1<λ2<⋯<λn<λn+1<⋯<1lA such that limn→∞λn=1lA. By Lemma 3, there exists a nondecreasing sequence {xn}n=1∞⊂P∖{θ} such that xn=T(λn,xn). By Lemma 4, we know that {xn}n=1∞ is uniformly bounded and equicontinuous. By using the Arzela–Ascoli theorem, we can prove that there exists {xnk}k=1∞⊂{xn}n=1∞ such that xnk→x˜∈E uniformly on [0,1]. Therefore, xnk satisfies


xnk(t)=T(λnk,xnk)(t)=λnk∫01G(t,s)g(s)f(xnk(s))ds,t∈[0,1].











Passing to the limit as k→∞, we obtain


x˜(t)=1lA∫01G(t,s)g(s)f(x˜(s))ds,t∈[0,1].











Hence, x˜=T1lA,x˜. ☐





Lemma 6.

Assume that (H1) holds, and that f(0)>0. Then, for any x∈P, there exist Ux≥V>0 such that


VKλ≤T(λ,x)(t)≤UxKλ,t∈[0,1],








where


Kλ=λ∫01g(t)dt.













Proof. 

By (H1), for any x∈P and t∈[0,1], we have


T(λ,x)(t)≥G̲f(0)λ∫01g(t)dt:=VKλ,








and


T(λ,x)(t)≤G¯f(∥x∥)λ∫01g(t)dt:=UxKλ.








 ☐






3. Main Results


Theorem 1.

Assume that f∞=∞ and 0<f0<∞. Then, for any 0<λ<μ1f0, BVP (1) admits a positive solution.





Proof. 

Since 0<λ<μ1f0, there exist ε>0 small enough and r>0 such that λ(f0+ε)<μ1, and f(s)s<f0+ε for s∈(0,r]. We claim that


T(λ,x)≠μx,x∈∂Pr,μ≥1.











Otherwise, there exist x0∈∂Pr and μ0≥1 such that T(λ,x0)=μ0x0. Since 0<γr≤x0(t)≤∥x0∥=r, we have


μ0x0(t)≤λ(f0+ε)∫01G(t,s)g(s)x0(s)ds=λ(f0+ε)Lx0(t),








then Lx0(t)≥μ0λ(f0+ε)x0(t). Thus, r(L)≥μ0λ(f0+ε)≥1λ(f0+ε). It follows that μ1≤λ(f0+ε), which is a contradiction. Then, i(T,Pr,P)=1.



Next, we prove that i(T,PR,P)=0 for some R>r. In fact, f∞=∞ implies that f(s)>Ms for some large R1>0 and s≥R1, where M>(λγA)-1. Let R>max{r,R1γ}. For x∈∂PR, we have x(t)≥γ∥x∥=γR>R1,t∈[0,1], then


∥T(λ,x)∥≥λM∫01G(0,s)g(s)x(s)ds≥λMγ∥x∥A>∥x∥.











Hence, i(T,PR,P)=0, and i(T,PR∖P¯r,P)=-1. Therefore, T admits a fixed point x*∈PR∖P¯r. ☐





Theorem 2.

Assume that (H1) holds, and that f0=f∞=∞. Then, BVP (1) has at least one and two positive solutions for λ=1lA and λ∈(0,1lA), respectively.





Proof. 

By Lemma 5, BVP (1) admits a positive solution for λ=1lA. For λ∈(0,1lA), by Lemmas 3 and 5, there exist x˜,xλ∈P∖{θ},xλ≤x˜ such that


T1lA,x˜(t)=x˜(t),T(λ,xλ)(t)=xλ(t),t∈[0,1].











If xλ=x˜, we have


T(λ,xλ)=xλ=x˜=T1lA,x˜=T1lA,xλ.











This contradiction shows that xλ<x˜.



Define Ω1={x∈E:-r<x(t)<x˜(t),t∈[0,1]}, where r>0 is the same as in the first part of Theorem 1. For any x∈P∩∂Ω1, we obtain ∥x∥=∥x˜∥, and


∥T(λ,x)∥<1lA∫01G(0,s)g(s)f(x˜(s))ds=x˜(0)=∥x˜∥.











Therefore,


∥T(λ,x)∥<∥x∥,x∈P∩∂Ω1.











As in the proof in Theorem 1, there is R>0 large enough such that


∥T(λ,x)∥>∥x∥,x∈P∩∂Ω2,








where Ω2={x∈E:∥x∥<R}. By compression expansion fixed point theorem, we see that T has a fixed point x¯λ∈P∩(Ω2∖Ω¯1). Since xλ∈Ω1,xλ≠x¯λ, problem (1) has a second positive solution. ☐





Theorem 3.

Assume that (H1) and (H2) hold, and that f(0)>0. Then, for any λ∈(0,∞), BVP (1) admits a unique positive solution x˙λ(t), and x˙λ(t) satisfies:

	(i) 

	
x˙λ(t) is nondecreasing with respect to λ;




	(ii) 

	
limλ→0+∥x˙λ∥=0,limλ→∞∥x˙λ∥=∞;




	(iii) 

	
∥x˙λ-x˙λ0∥→0 as λ→λ0.











Proof. 

Since T is nondecreasing, for u∈P, we have


T(λ,κx)(t)≥ϕ(κ)λ∫01G(t,s)g(s)f(x(s))ds=ϕ(κ)T(λ,x)(t),t∈[0,1].



(4)







Define x^(t)=Kλ, where Kλ is given by Lemma 6, then x^∈P and VKλ≤T(λ,x^)(t)≤UxKλ. Denote


V¯=sup{μ:μKλ≤T(λ,x^)(t)},U¯=inf{μ:μKλ≥T(λ,x^)(t)},








then V¯≥V and U¯≤Ux. Select V˜ and U˜ so that


0<V˜<min{1,F-1(V¯)},0<1U˜<min1,F-11U¯.











We define


x1(t)=V˜Kλ,xk+1(t)=T(λ,xk)(t),t∈[0,1],k=1,2,⋯,










y1(t)=U˜Kλ,yk+1(t)=T(λ,yk)(t),t∈[0,1],k=1,2,⋯.











Combining the properties of T and (4), we get


V˜Kλ=x1(t)≤x2(t)≤⋯≤xk(t)≤⋯≤yk(t)≤⋯≤y2(t)≤y1(t)=U˜Kλ.



(5)







Let d=V˜U˜, obviously 0<d<1. We claim that


xk(t)≥ϕk-1(d)yk(t),t∈[0,1],k=1,2,⋯,



(6)




where ϕ0(d)=d,ϕk(d)=ϕ(ϕk-1(d)),k=1,2,⋯. In fact, x1(t)=dy1(t)=ϕ0(d)y1(t),t∈[0,1]. Suppose xn(t)≥ϕn-1(d)yn(t) for t∈[0,1], then


xn+1(t)≥T(λ,ϕn-1(d)yn)(t)≥ϕ(ϕn-1(d))T(λ,yn)(t)=ϕn(d)yn+1(t).











Hence, it follows by induction that (6) is true. According to (5) and (6), one has


0≤xn+m(t)-xn(t)≤yn(t)-xn(t)≤(1-ϕn-1(d))y1(t)=(1-ϕn-1(d))U˜Kλ,








where m≥0 is an integer. Thus,


∥xn+m-xn∥≤∥yn-xn∥≤(1-ϕn-1(d))U˜Kλ.



(7)







We claim that limn→∞ϕn(d)=1. From (H2) and 0<d<1, we see that ϕ(d)∈(d,1) and d=ϕ0(d)<ϕ1(d)<⋯<ϕn(d)<⋯<1. Sequence {ϕn(d)}n=1∞ is increasing and bounded, there is p∈[d,1] such that limn→∞ϕn(d)=p. By the continuity of ϕ and ϕn(d)=ϕ(ϕn-1(d)), we conclude that p=ϕ(p), i.e., F(p)=1. It follows that p=1. Inequality (7) implies that there exists x¯∈P such that limn→∞xn(t)=limn→∞yn(t)=x¯(t) for t∈[0,1]. Clearly, x¯(t) is a positive solution of problem (1).



Suppose that x¯1(t) and x¯2(t) are positive solutions of problem (1), then T(λ,x¯1)(t)=x¯1(t) and T(λ,x¯2)(t)=x¯2(t),t∈[0,1]. Define δ˜=sup{δ:x¯1(t)≥δx¯2(t)}, then x¯1(t)≥δ˜x¯2(t). We claim that δ˜≥1. Otherwise, δ˜<1. Assumption (H2) implies that f(δ˜x¯2(t))>φ(δ˜)f(x¯2(t)),t∈[0,1]. Since f is nondecreasing,


x¯1(t)=T(λ,x¯1)(t)≥T(λ,δ˜x¯2)(t)>ϕ(δ˜)T(λ,x¯2)(t)>δ˜x¯2(t),t∈[0,1],








a contradiction. Then, x¯1(t)≥x¯2(t) for t∈[0,1]. Similarly, x¯2(t)≥x¯1(t). Therefore, x¯1(t)=x¯2(t),t∈[0,1]. This proves the uniqueness result.



Next, we show that (i)-(iii) hold. Let


(Hx)(t)=∫01G(t,s)g(s)f(x(s))ds,t∈[0,1],








then T(λ,x)=λHx. Since Po={x∈P:x(t)>0,t∈[0,1]} is nonempty, the operator H:Po→Po is increasing, and H(κx)≥ϕ(κ)Hx for 0<κ<1. Let ω=1λ. We now write Hxω=ωxω instead of λHxλ=xλ. Assume 0<ω1<ω2, then xω1≥xω2. Indeed, denote ω¯=sup{t>0:xω1≥txω2}, then ω¯≥1. Otherwise 0<ω¯<1. Direct computations yield ω1xω1=Hxω1≥H(ω¯xω2)≥ϕ(ω¯)Hxω2=ϕ(ω¯)ω2xω2, then xω1≥ω2ω1ϕ(ω¯)xω2>ω¯xω2. This is a contradiction to the definition of ω¯. Thus, ω¯≥1,xω1≥xω2, and further


xω1=1ω1Hxω1≥1ω1Hxω2=ω2ω1xω2≫xω2,0<ω1<ω2.



(8)







Then, xω(t) is strong decreasing in ω, that is, xλ(t) is strong increasing in λ. Let ω2=ω and fix ω1 in (8), for ω>ω1, we have xω1≥ωω1xω, and


∥xω∥≤Nω1ω∥xω1∥,








where N>0 is a normal constant of cone P. Because ω=1λ, then limλ→0+∥xλ∥=0. Let ω1=ω and fix ω2 in (8), we obtain limλ→+∞∥xλ∥=+∞.



Finally, for given ω0, by (8), we have


xω≪xω0,ω>ω0.



(9)







Let tω=sup{t>0:xω≥txω0,ω>ω0}, then 0<tω<1 and xω≥tωxω0. Direct computations yield ωxω=Hxω≥H(tωxω0)≥ϕ(tω)Hxω0=ϕ(tω)ω0xω0. By the definition of tω, we have ω0ωϕ(tω)≤tω, and


tω≥F-1ω0ω,∀ω>ω0.



(10)







Combining (9) with (10), one has that


∥xω0-xω∥≤N1-F-1ω0ω∥xω0∥→0,ω→ω0+0.











Similarly, ∥xω0-xω∥→0,ω→ω0-0. Hence, ∥xω0-xω∥→0 as ω→ω0.  ☐
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