# Hyperbolicity of Direct Products of Graphs

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Definitions and Background

**Definition**

**1.**

**Proposition**

**1.**

**Proposition**

**2.**

**Definition**

**2.**

**Corollary**

**1.**

**Theorem**

**1.**

**Corollary**

**2.**

**Theorem**

**2**

## 3. Hyperbolic Direct Products

**Proposition**

**3.**

**Proof.**

**Lemma**

**1.**

**Proof.**

**Theorem**

**3.**

**Proof.**

**Theorem**

**4.**

**Proof.**

**Lemma**

**2.**

**Proof.**

**Lemma**

**3.**

**Lemma**

**4.**

**Proof.**

**Remark**

**1.**

**Lemma**

**5.**

**Proof.**

**Corollary**

**3.**

**Proof.**

**Theorem**

**5.**

**Theorem**

**6.**

**Theorem**

**7.**

**Theorem**

**8.**

**Proof.**

**Theorem**

**9.**

**Proof.**

**Corollary**

**4.**

**Theorem**

**10.**

**Theorem**

**11.**

**Proof.**

**Lemma**

**6.**

**Proof.**

**Theorem**

**12.**

**Lemma**

**7.**

**Proof.**

**Definition**

**3.**

**Remark**

**2.**

**Lemma**

**8.**

**Proof.**

**Definition**

**4.**

**Definition**

**5.**

**Theorem**

**13.**

- (1)
- $DX$ is hyperbolic.
- (2)
- X is hyperbolic and there exists a constant ${c}_{1}$ such that for every $k,l\in J$ and $a\in {\eta}_{k},b\in {\eta}_{l}$ we have ${d}_{X}(x,{\cup}_{j\in J}{\eta}_{j})\le {c}_{1}$ for every $x\in \left[ab\right]\subset X$.
- (3)
- X is hyperbolic and there exist constants ${c}_{2},\alpha ,\beta $ such that for every $k,l\in J$ and $a\in {\eta}_{k},b\in {\eta}_{l}$ we have ${d}_{X}(x,{\cup}_{j\in J}{\eta}_{j})\le {c}_{2}$ for every x in some $(\alpha ,\beta )$-quasi-geodesic joining a with b in X.

**Theorem**

**14.**

**Theorem**

**15.**

- (1)
- ${G}_{1}\times {G}_{2}$ is hyperbolic.
- (2)
- ${G}_{1}$ is hyperbolic and there exists a constant ${c}_{1}$, such that for every $k,l\in J$ and ${w}_{k}\in {B}_{k}$, ${w}_{l}\in {B}_{l}$ there exists a geodesic $\left[{w}_{k}{w}_{l}\right]$ in ${G}_{1}$ with ${d}_{{G}_{1}}(x,{\cup}_{j\in J}{w}_{j})\le {c}_{1}$ for every $x\in \left[{w}_{k}{w}_{l}\right]$.
- (3)
- ${G}_{1}$ is hyperbolic and there exist constants ${c}_{2},\alpha ,\beta $, such that for every $k,l\in J$ we have ${d}_{{G}_{1}}(x,{\cup}_{j\in J}{w}_{j})\le {c}_{2}$ for every x in some ($\alpha ,\beta $)-quasi-geodesic joining ${w}_{k}$ with ${w}_{l}$ in ${G}_{1}$.

**Proof.**

**Corollary**

**5.**

## 4. Bounds for the Hyperbolicity Constant of Some Direct Products

**Theorem**

**16.**

**Remark**

**3.**

**Remark**

**4.**

**Lemma**

**9.**

**Remark**

**5.**

**Proof.**

**Theorem**

**17.**

**Proof.**

**Theorem**

**18.**

**Proof.**

**Theorem**

**19.**

**Proof.**

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Hammack, R.; Imrich, W.; Klavžar, S. Handbook of Product Graphs, 2rd ed.; Discrete Mathematics and Its Applications Series; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Weichsel, P.M. The Kronecker product of graphs. Proc. Am. Math. Soc.
**1962**, 13, 47–52. [Google Scholar] [CrossRef] - Bendall, S.; Hammack, R. Centers of n-fold tensor products of graphs. Discuss. Math. Graph Theory
**2004**, 24, 491–501. [Google Scholar] [CrossRef] - Brešar, B.; Imrich, W.; Klavžar, S.; Zmazek, B. Hypercubes as direct products. SIAM J. Discret. Math.
**2005**, 18, 778–786. [Google Scholar] [CrossRef] - Hammack, R. Minimum cycle bases of direct products of bipartite graphs. Australas. J. Combin.
**2006**, 36, 213–222. [Google Scholar] - Imrich, W.; Rall, D.F. Finite and infinite hypercubes as direct products. Australas. J. Combin.
**2006**, 36, 83–90. [Google Scholar] - Imrich, W.; Stadler, P. A prime factor theorem for a generalized direct product. Discuss. Math. Graph Theory
**2006**, 26, 135–140. [Google Scholar] [CrossRef] - Jha, P.K.; Klavžar, S. Independence in direct-product graphs. Ars Combin.
**1998**, 50, 53–63. [Google Scholar] - Balakrishnan, R.; Paulraja, P. Hamilton cycles in tensor product of graphs. Discret. Math.
**1998**, 186, 1–13. [Google Scholar] [CrossRef] - Kheddouci, H.; Kouider, M. Hamiltonian cycle decomposition of Kronecker product of some cubic graphs by cycles. J. Combin. Math. Combin. Comput.
**2000**, 32, 3–22. [Google Scholar] - Imrich, W.; Klavžar, S. Product Graphs: Structure and Recognition; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Zhu, X. A survey on Hedetniemi’s conjecture. Taiwanese J. Math.
**1998**, 2, 1–24. [Google Scholar] [CrossRef] - Imrich, W. Factoring cardinal product graphs in polynomial time. Discr. Math.
**1998**, 192, 119–144. [Google Scholar] [CrossRef] - Alonso, J.; Brady, T.; Cooper, D.; Delzant, T.; Ferlini, V.; Lustig, M.; Mihalik, M.; Shapiro, M.; Short, H. Notes on word hyperbolic groups. In Group Theory from a Geometrical Viewpoint; Ghys, E., Haefliger, A., Verjovsky, A., Eds.; World Scientific: Singapore, 1992. [Google Scholar]
- Ghys, E.; de la Harpe, P. Sur les Groupes Hyperboliques d’après Mikhael Gromov; Progress in Mathematics 83; Birkhäuser Boston Inc.: Boston, MA, USA, 1990. [Google Scholar]
- Gromov, M. Hyperbolic groups. In Essays in Group Theory; Gersten, S.M., Ed.; Mathematical Sciences Research Institute Publications; Springer: Berlin, Germany, 1987; Volume 8, pp. 75–263. [Google Scholar]
- Oshika, K. Discrete Groups; AMS Bookstore: Providence, RI, USA, 2002. [Google Scholar]
- Charney, R. Artin groups of finite type are biautomatic. Math. Ann.
**1992**, 292, 671–683. [Google Scholar] [CrossRef] - Chepoi, V.; Estellon, B. Packing and covering δ-hyperbolic spaces by balls. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques; Springer: Berlin/Heidelberg, Germany, 2007; pp. 59–73. [Google Scholar]
- Eppstein, D. Squarepants in a tree: Sum of subtree clustering and hyperbolic pants decomposition. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (SODA’2007), Barcelona, Spain, 16–19 January 2017; pp. 29–38. [Google Scholar]
- Gavoille, C.; Ly, O. Distance labeling in hyperbolic graphs. In Proceedings of the International Symposium on Algorithms and Computation (ISAAC); Springer: Berlin/Heidelberg, Germany, 2005; pp. 171–179. [Google Scholar]
- Krauthgamer, R.; Lee, J.R. Algorithms on negatively curved spaces. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), Berkeley, CA, USA, 21–24 October 2006; pp. 1–11. [Google Scholar]
- Shavitt, Y.; Tankel, T. On Internet embedding in hyperbolic spaces for overlay construction and distance estimation. IEEE/ACM Trans. Netw.
**2008**, 16, 25–36. [Google Scholar] [CrossRef] - Verbeek, K.; Suri, S. Metric embeddings, hyperbolic space and social networks. In Proceedings of the 30th Annual Symposium on Computational Geometry, Kyoto, Japan, 8–11 June 2014; pp. 501–510. [Google Scholar]
- Wu, Y.; Zhang, C. Chordality and hyperbolicity of a graph. Electr. J. Comb.
**2011**, 18, P43. [Google Scholar] - Abu-Ata, M.; Dragan, F.F. Metric tree-like structures in real-life networks: An empirical study. Networks
**2016**, 67, 49–68. [Google Scholar] [CrossRef] - Adcock, A.B.; Sullivan, B.D.; Mahoney, M.W. Tree-like structure in large social and information networks. In Proceedings of the 13th Int Conference Data Mining (ICDM), Dallas, TX, USA, 7–10 December 2013; pp. 1–10. [Google Scholar]
- Krioukov, D.; Papadopoulos, F.; Kitsak, M.; Vahdat, A.; Boguná, M. Hyperbolic geometry of complex networks. Phys. Rev. E
**2010**, 82, 036106. [Google Scholar] [CrossRef] [PubMed] - Montgolfier, F.; Soto, M.; Viennot, L. Treewidth and Hyperbolicity of the Internet. In Proceedings of the 10th IEEE International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 25–27 August 2011; pp. 25–32. [Google Scholar]
- Chepoi, V.; Dragan, F.F.; Vaxès, Y. Core congestion is inherent in hyperbolic networks. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, Barcelona, Spain, 16–19 January 2017; pp. 2264–2279. [Google Scholar]
- Grippo, E.; Jonckheere, E.A. Effective resistance criterion for negative curvature: application to congestion control. In Proceedings of the 2016 IEEE Conference on Control Applications (CCA), Buenos Aires, Argentina, 19–22 September 2016. [Google Scholar]
- Jonckheere, E.A. Contrôle du traffic sur les réseaux à géométrie hyperbolique—Vers une théorie géométrique de la sécurité l’acheminement de l’information. J. Eur. Syst. Autom.
**2002**, 8, 45–60. [Google Scholar] - Jonckheere, E.A.; Lohsoonthorn, P. Geometry of network security. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; pp. 111–151. [Google Scholar]
- Li, S.; Tucci, G.H. Traffic Congestion in Expanders, (p,δ)-Hyperbolic Spaces and Product of Trees. Int. Math.
**2015**, 11, 134–142. [Google Scholar] - Shang, Y. Lack of Gromov-hyperbolicity in colored random networks. Pan-Am. Math. J.
**2011**, 21, 27–36. [Google Scholar] - Shang, Y. Lack of Gromov-hyperbolicity in small-world networks. Cent. Eur. J. Math.
**2012**, 10, 1152–1158. [Google Scholar] [CrossRef] - Shang, Y. Non-hyperbolicity of random graphs with given expected degrees. Stoch. Models
**2013**, 29, 451–462. [Google Scholar] [CrossRef] - Gosak, M.; Markovič, R.; Dolenšek, J.; Slak Rupnik, M.; Marhl, M.; Stožer, A.; Perc, M. Network science of biological systems at different scales: A review. Phys. Life Rev.
**2018**, 24, 118–135. [Google Scholar] [CrossRef] [PubMed] - Tourís, E. Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces. J. Math. Anal. Appl.
**2011**, 380, 865–881. [Google Scholar] [CrossRef] - Bermudo, S.; Rodríguez, J.M.; Sigarreta, J.M. Computing the hyperbolicity constant. Comput. Math. Appl.
**2011**, 62, 4592–4595. [Google Scholar] [CrossRef] - Bermudo, S.; Rodríguez, J.M.; Sigarreta, J.M.; Vilaire, J.-M. Gromov hyperbolic graphs. Discr. Math.
**2013**, 313, 1575–1585. [Google Scholar] [CrossRef] - Brinkmann, G.; Koolen, J.; Moulton, V. On the hyperbolicity of chordal graphs. Ann. Comb.
**2001**, 5, 61–69. [Google Scholar] [CrossRef] - Chepoi, V.; Dragan, F.F.; Estellon, B.; Habib, M.; Vaxes, Y. Notes on diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs. Electr. Notes Discr. Math.
**2008**, 31, 231–234. [Google Scholar] [CrossRef] - Dragan, F.; Mohammed, A. Slimness of graphs. arXiv, 2017; arXiv:1705.09797. [Google Scholar]
- Martínez-Pérez, A. Chordality properties and hyperbolicity on graphs. Electr. J. Comb.
**2016**, 23, P3.51. [Google Scholar] - Michel, J.; Rodríguez, J.M.; Sigarreta, J.M.; Villeta, M. Gromov hyperbolicity in Cartesian product graphs. Proc. Indian Acad. Sci. Math. Sci.
**2010**, 120, 1–17. [Google Scholar] [CrossRef] - Rodríguez, J.M.; Sigarreta, J.M.; Vilaire, J.-M.; Villeta, M. On the hyperbolicity constant in graphs. Discr. Math.
**2011**, 311, 211–219. [Google Scholar] [CrossRef] - Chen, B.; Yau, S.-T.; Yeh, Y.-N. Graph homotopy and Graham homotopy. Discret. Math.
**2001**, 241, 153–170. [Google Scholar] [CrossRef] - Shang, Y. On the likelihood of forests. Phys. A Stat. Mech. Appl.
**2016**, 456, 157–166. [Google Scholar] [CrossRef] - Fournier, H.; Ismail, A.; Vigneron, A. Computing the Gromov hyperbolicity of a discrete metric space. Inf. Process. Lett.
**2015**, 115, 576–579. [Google Scholar] [CrossRef] [Green Version] - Papasoglu, P. An algorithm detecting hyperbolicity. In Geometric and Computational Perspectives on Infinite Groups, DIMACS; Series in Discrete Mathematics and Theoretical Computer Science; AMS: Hong Kong, China, 1996; Volume 25, pp. 193–200. [Google Scholar]
- Chalopin, J.; Chepoi, V.; Papasoglu, P.; Pecatte, T. Cop and robber game and hyperbolicity. SIAM J. Discr. Math.
**2015**, 28, 1987–2007. [Google Scholar] [CrossRef] - Sigarreta, J.M. Hyperbolicity in median graphs. Proc. Indian Acad. Sci. Math. Sci.
**2013**, 123, 455–467. [Google Scholar] [CrossRef] - Carballosa, W.; Rodríguez, J.M.; Sigarreta, J.M. New inequalities on the hyperbolicity constant of line graphs. Ars Combin.
**2016**, 129, 367–386. [Google Scholar] - Carballosa, W.; Rodríguez, J.M.; Sigarreta, J.M.; Villeta, M. Gromov hyperbolicity of line graphs. Electr. J. Comb.
**2011**, 18, P210. [Google Scholar] - Cohen, N.; Coudert, D.; Ducoffe, G.; Lancin, A. Applying clique-decomposition for computing Gromov hyperbolicity. Theor. Comp. Sci.
**2017**. [Google Scholar] [CrossRef] - Pestana, D.; Rodríguez, J.M.; Sigarreta, J.M.; Villeta, M. Gromov hyperbolic cubic graphs. Central Eur. J. Math.
**2012**, 10, 1141–1151. [Google Scholar] [CrossRef] - Bermudo, S.; Rodríguez, J.M.; Sigarreta, J.M.; Tourís, E. Hyperbolicity and complement of graphs. Appl. Math. Lett.
**2011**, 24, 1882–1887. [Google Scholar] [CrossRef] - Hernández, J.C.; Rodríguez, J.M.; Sigarreta, J.M.; Torres-Nuñez, Y.; Villeta, M. Gromov hyperbolicity of regular graphs. Ars Combin.
**2017**, 130, 395–416. [Google Scholar] - Bermudo, S.; Carballosa, W.; Rodríguez, J.M.; Sigarreta, J.M. On the hyperbolicity of edge-chordal and path-chordal graphs. Filomat
**2016**, 30, 2599–2607. [Google Scholar] [CrossRef] - Carballosa, W.; Portilla, A.; Rodríguez, J.M.; Sigarreta, J.M. Planarity and hyperbolicity in graphs. Graphs Combin.
**2015**, 31, 1311–1324. [Google Scholar] [CrossRef] - Portilla, A.; Rodríguez, J.M.; Sigarreta, J.M.; Vilaire, J.-M. Gromov hyperbolic tessellation graphs. Utilitas Math.
**2015**, 97, 193–212. [Google Scholar] - Coudert, D.; Ducoffe, G. On the hyperbolicity of bipartite graphs and intersection graphs. Discr. Appl. Math.
**2016**, 214, 187–195. [Google Scholar] [CrossRef] [Green Version] - Calegari, D.; Fujiwara, K. Counting subgraphs in hyperbolic graphs with symmetry. J. Math. Soc. Jpn.
**2015**, 67, 1213–1226. [Google Scholar] [CrossRef] [Green Version] - Cantón, A.; Granados, A.; Pestana, D.; Rodríguez, J.M. Gromov hyperbolicity of periodic graphs. Bull. Malays. Math. Sci. Soc.
**2016**, 39, S89–S116. [Google Scholar] [CrossRef] - Cantón, A.; Granados, A.; Pestana, D.; Rodríguez, J.M. Gromov hyperbolicity of periodic planar graphs. Acta Math. Sin.
**2014**, 30, 79–90. [Google Scholar] [CrossRef] - Koolen, J.H.; Moulton, V. Hyperbolic Bridged Graphs. Eur. J. Comb.
**2002**, 23, 683–699. [Google Scholar] [CrossRef] - Rodríguez, J.M. Characterization of Gromov hyperbolic short graphs. Acta Math. Sin.
**2014**, 30, 197–212. [Google Scholar] [CrossRef] - Carballosa, W.; Rodríguez, J.M.; Rosario, O.; Sigarreta, J.M. Gromov hyperbolicity of graph minors. Bull. Iran. Math. Soc.
**2018**, 44, 481–503. [Google Scholar] [CrossRef] - Bermudo, S.; Rodríguez, J.M.; Rosario, O.; Sigarreta, J.M. Small values of the hyperbolicity constant in graphs. Discr. Math.
**2016**, 339, 3073–3084. [Google Scholar] [CrossRef] [Green Version] - Granados, A.; Pestana, D.; Portilla, A.; Rodríguez, J.M. Gromov hyperbolicity in Mycielskian Graphs. Symmetry
**2017**, 9, 131. [Google Scholar] [CrossRef] - Hernández, J.C.; Reyes, R.; Rodríguez, J.M.; Sigarreta, J.M. Mathematical properties on the hyperbolicity of interval graphs. Symmetry
**2017**, 9, 255. [Google Scholar] [CrossRef] - Carballosa, W.; de la Cruz, A.; Rodríguez, J.M. Gromov hyperbolicity in the Cartesian sum of graphs. Bull. Iran. Math. Soc.
**2017**, 1–20. [Google Scholar] [CrossRef] - Carballosa, W.; Casablanca, R.M.; de la Cruz, A.; Rodríguez, J.M. Gromov hyperbolicity in strong product graphs. Electr. J. Comb.
**2013**, 20, 2. [Google Scholar] - Carballosa, W.; de la Cruz, A.; Rodríguez, J.M. Gromov hyperbolicity in lexicographic product graphs. arXiv, 2015; arXiv:1506.06034. [Google Scholar]
- Carballosa, W.; Rodríguez, J.M.; Sigarreta, J.M. Hyperbolicity in the corona and join of graphs. Aequ. Math.
**2015**, 89, 1311–1327. [Google Scholar] [CrossRef] - Bowditch, B.H. Notes on Gromov’s hyperbolicity criterion for path-metric spaces. In Group Theory from a Geometrical Viewpoint; Ghys, E., Haefliger, A., Verjovsky, A., Eds.; World Scientific: River Edge, NJ, USA, 1991; pp. 64–167. [Google Scholar]
- Shchur, V. A quantitative version of the Morse lemma and quasi-isometries fixing the ideal boundary. J. Funct. Anal.
**2013**, 264, 815–836. [Google Scholar] [CrossRef] - Rodríguez, J.M.; Tourís, E. Gromov hyperbolicity through decomposition of metric spaces. Acta Math. Hung.
**2004**, 103, 53–84. [Google Scholar] [CrossRef] - Alvarez, V.; Portilla, A.; Rodríguez, J.M.; Tourís, E. Gromov hyperbolicity of Denjoy domains. Geom. Dedic.
**2006**, 121, 221–245. [Google Scholar] [CrossRef] [Green Version] - Bonk, M. Quasi-geodesics segments and Gromov hyperbolic spaces. Geom. Dedicata
**1996**, 62, 281–298. [Google Scholar] [CrossRef] - Shang, Y. Random Lifts Of Graphs: Network Robustness Based On The Estrada Index. Appl. Math. E-Notes
**2012**, 12, 53–61. [Google Scholar]

**Figure 1.**If ${G}_{1}$ and ${G}_{2}$ are unbounded, for any odd n, there is a geodesic triangle $T\subset {G}_{1}\times {G}_{2}$ with $\delta \left(T\right)\ge \frac{n-3}{2}$.

**Figure 2.**Two geodesic triangles, ${T}_{1},{T}_{2}$, which are odd cycles and a geodesic g joining them define an even closed path.

**Figure 3.**If ${d}_{{G}_{1}}(m,{T}_{1}\cup g)\le 8\delta $, then $m\in \left[{x}^{\prime}{z}^{\prime}\right]$ and there is a point ${m}^{\prime}\in \left[{x}^{\prime}m\right]\subset \left[{x}^{\prime}{w}_{k}\right]$ such that ${d}_{{G}_{1}}(m,{m}^{\prime})=2(D+8\delta )$.

**Figure 4.**For any geodesic $\gamma $ in ${P}_{m}\times {P}_{n}$ with ${\pi}_{1}\left(u\right)={\pi}_{1}\left(v\right)$ for some different vertices $u,v$ in $\gamma $, then $L\left(\gamma \right)\le n-1$.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Carballosa, W.; De la Cruz, A.; Martínez-Pérez, A.; Rodríguez, J.M.
Hyperbolicity of Direct Products of Graphs. *Symmetry* **2018**, *10*, 279.
https://doi.org/10.3390/sym10070279

**AMA Style**

Carballosa W, De la Cruz A, Martínez-Pérez A, Rodríguez JM.
Hyperbolicity of Direct Products of Graphs. *Symmetry*. 2018; 10(7):279.
https://doi.org/10.3390/sym10070279

**Chicago/Turabian Style**

Carballosa, Walter, Amauris De la Cruz, Alvaro Martínez-Pérez, and José M. Rodríguez.
2018. "Hyperbolicity of Direct Products of Graphs" *Symmetry* 10, no. 7: 279.
https://doi.org/10.3390/sym10070279