Some Aspects of Nonlinearity and Self-Organization In Biosystems on Examples of Localized Excitations in the DNA Molecule and Generalized Fisher–KPP Model
Abstract
:1. Introduction
2. Soliton Excitations in Molecular Chains
2.1. The Concept of Solitons in Molecules
2.2. Kink Dynamics asExternal Factors for the Sine-Gordon DNA Model
2.3. Localized Energy Distributions in the Framework of The Peyrard–Bishop Model
2.4. Summary
3. Pattern Formation in Cell Populations
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Arndt, M.; Juffmann, T.H.; Vedral, V. Quantum physics meets biology. HFSP J. 2009, 3, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Fleming, G.R.; Scholes, G.D.; Cheng, Y.-C. Quantum effects in biology. Procedia Chem. 2011, 3, 38–57. [Google Scholar] [CrossRef]
- Milton, K.A.; Høye, J.S.; Brevik, I. The Reality of Casimir Friction. Symmetry 2016, 8, 29. [Google Scholar] [CrossRef]
- Elizalde, E.; Odintsov, S.D.; Romeo, A.; Bytsenko, A.A.; Zerbini, S. Zeta Regularization Techniques with Applications; World Scientific: Singapore, 1994; p. 319. [Google Scholar]
- Elizalde, E.; Odintsov, S.D.; Saharian, A.A. Fermionic condensate and Casimir densities in the presence of compact dimensions with applications to nanotubes. Phys. Rev. D 2011, 83, 105023. [Google Scholar] [CrossRef]
- Coveney, P.V.; Fowler, P.W. Modelling biological complexity: A physical scientist’s perspective. J. R. Soc. Interface 2005, 2, 267–280. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Opportunities in Biology; National Academy Press: Washington, DC, USA, 1989; p. 464. Available online: https://www.nap.edu/catalog/742/opportunities-in-biology (accessed on 9 February 2018).
- Davydov, A.S. Solitons in Molecular Systems; Naukova Dumka: Kiev, Ukraine, 1984; (Reprinted by Springer: Berlin/Heidelberg, Germany, 1985). [Google Scholar]
- Christiansen, P.L.; Scott, A.C. (Eds.) Davydov’s Soliton Revisited Self-Trapping of Vibrational Energy in Protein; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Yakushevich, L.V. Nonlinear Physics of DNA, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2004; p. 190. [Google Scholar]
- Davydov, A.S. The theory of contraction of proteins under their excitation. J. Theor. Biol. 1973, 38, 559–569. [Google Scholar] [CrossRef]
- Davydov, A.S. The lifetime of molecular (Davydov) solitons. J. Biol. Phys. 1991, 18, 111–125. [Google Scholar] [CrossRef]
- Brizhik, L.; Eremko, A.; Piette, B.; Zakrzewski, W. Solitons in alppha-helical proteins. Phys. Rev. E 2004, 70, 031914. [Google Scholar] [CrossRef] [PubMed]
- Brizhik, L. Nonlinear mechanism for weak photon emission from biosystems. Indian J. Exp. Biol. 2008, 46, 353–357. [Google Scholar] [PubMed]
- Peyrard, M.; Bishop, A.R. Statistical mechanics of a nonlinear model for DNA denatnration. Phys. Rev. Lett. 1989, 62, 2755–2758. [Google Scholar] [CrossRef] [PubMed]
- Scott, A. Davydov’s soliton. Phys. Rep. Rev. Sect. Phys. Lett. 1992, 217, 1–67. [Google Scholar] [CrossRef]
- Englander, S.W.; Kallenbach, N.R.; Heeger, A.J.; Krumhansl, J.A.; Litwin, S. Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. Natl. Acad. Sci. USA 1980, 77, 7222–7226. [Google Scholar] [CrossRef] [PubMed]
- Takeno, S.; Homma, S. Topological solitons and modulated structure of bases in DNA double helices. Prog. Theor. Phys. 1983, 70, 308–311. [Google Scholar] [CrossRef]
- Takeno, S.; Homma, S. Self-localized anharmonic rotational modes of bases in DNA. J. Phys. Soc. 1990, 59, 1890–1901. [Google Scholar] [CrossRef]
- Yakushevich, L. Is DNA a nonlinear dynamical system where solitary conformational waves are possible? J. Biosci. 2001, 26, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Grinevich, A.A.; Yakushevich, L.V. On the modeling of the motion of a transcription bubble under constant torque. Biophysics 2016, 61, 539–546. [Google Scholar] [CrossRef]
- Musumeci, F.; Brizhik, L.S.; Ho, M. Energy and information transfer in biological systems: How physics could enrich biological understanding. In Proceedings of the International Workshop, Acireale, Catania, Italy, 18–22 September 2002; World Scientific: Singapore, 2003; p. 359. [Google Scholar]
- Brizhik, L. Influence of electromagnetic field on soliton-mediated charge transport in biological systems. Electromagn. Biol. Med. 2015, 34, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Brizhik, L.; Foletti, A. Nonlinear quantum phenomena and biophysical aspects of complexity related to health and disease. J. Biol. Regul. Homeost. Agents 2014, 28, 357–366. [Google Scholar] [PubMed]
- Foletti, A.; Brizhik, L. Nonlinearity, coherence and complexity: Biophysical aspects related to health and disease. Electromagn. Biol. Med. 2017, 36, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Yakushevich, L.V.; Krasnobaeva, L.A.; Shapovalov, A.V.; Quintero, N.R. One- and two-soliton solutions of the sine-Gordon equation as applied to DNA. Biophysics 2005, 50, 404–409. [Google Scholar]
- Krasnobaeva, L.A.; Shapovalov, A.V. Kink velocity in nonstationary external fields for the sine-Gordon model with allowance for dissipation effects. Russ. Phys. J. 2008, 51, 89–98. [Google Scholar] [CrossRef]
- Krasnobaeva, L.A.; Shapovalov, A.V. Kink dynamics in the medium with a random force and dissipation in the sine-Gordon model. Russ. Phys. J. 2008, 51, 1–10. [Google Scholar] [CrossRef]
- Zamora-Sillero, E.; Shapovalov, A.V.; Esteban, F.J. Formation, control, and dynamics of N localized structures in the Peyrard–Bishop model. Phys. Rev. E 2007, 76, 066603. [Google Scholar] [CrossRef] [PubMed]
- Yomosa, S. Soliton excitations in deoxyribonucleic acid (DNA) double helices. Phys.Rev. A 1983, 27, 2120–2125. [Google Scholar] [CrossRef]
- Yomosa, S. Solitary excitations in deoxyribonuclei acid (DNA) double helices. Phys. Rev. A 1984, 30, 474–480. [Google Scholar] [CrossRef]
- Krumhansl, J.A.; Alexander, D.M. Nonlinear dynamics and conformational excitations in biomolecular materials. In Structure and Dynamics: Nucleic Acids and Proteins; Clementi, E., Sarma, R.H., Eds.; Adenine Press: New York, NY, USA, 1983; pp. 61–80. [Google Scholar]
- Krumhansl, J.A.; Wysin, G.M.; Alexander, D.M.; Garcia, A.; Lomdahl, P.S.; Layne, S.P. Further theoretical studies of nonlinear conformational motions in double-helix DNA. In Structure and Motion: Membranes, Nucleic Acids and Proteins; Clementi, E., Corongiu, G., Sarma, M.H., Sarma, R.H., Eds.; Adenine Press: New York, NY, USA, 1985; pp. 407–415. [Google Scholar]
- Fedyanin, V.K.; Yakushevich, L.V. Scattering of neutrons and light by DNA solitons. Stud. Biophys. 1984, 103, 171–178. [Google Scholar]
- Zhang, C.-T. Soliton excitations in deoxyribonucleic acid (DNA) double helices’. Phys. Rev. A 1987, 35, 886–891. [Google Scholar] [CrossRef]
- Prohofsky, E.W. Solitons hiding in DNA and their possible significance in RNA transcription. Phys. Rev. A 1988, 38, 1538–1541. [Google Scholar] [CrossRef]
- Novikov, S.; Manakov, S.V.; Pitaevskij, L.P.; Zakharov, V.E. Theory of Solitons. The Inverse Scattering Methods; Plenum Publishing Corporation: New York, NY, USA/London, UK, 1984; p. 276. [Google Scholar]
- Faddeev, L.D.; Takhtajan, L.A. Hamiltonian Methods in the Theory of Solitons; Springer Series in Soviet Mathematics; Springer: Berlin, Germay, 1987; p. 592. [Google Scholar]
- Kivshar, Y.S.; Malomed, B.A. Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 1989, 61, 763–915. [Google Scholar] [CrossRef]
- Sanchez, A.S.; Bishop, A.R. Collective coordinates and length-scale competition in spatially inhomogeneous soliton-bearing equations. SIAM Rev. 1998, 40, 579–615. [Google Scholar] [CrossRef]
- Bluman, G.W.; Cole, J.D. Similarity Methods for Differential Equations; Series Title: Applied Mathematical Sciences, V. 13; Springer: New York, NY, USA, 1974; p. 333. [Google Scholar]
- Ovsyannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982; p. 432. [Google Scholar]
- Ibragimov, N.H. Transformation Groups Applied to Mathematical Physics; Soviet Series; Mathematics and its Applications; D. Reidel Publishing: Dordrecht, The Netherlands, 1985; p. 394. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Series Title: Graduate Texts in Mathematics, V. 107; Springer: New York, NY, USA, 1993; p. 513. [Google Scholar]
- Tverdislov, V.A. Chirality as an Instrument of Stratification of Hierarchical Systems in Animate and Inanimate Nature. arXiv, 2012; arXiv:1212.1677. [Google Scholar]
- McLaughlin, D.W.; Scott, A.C. Perturbation analysis of fluxon dynamics. Phys. Rev. A 1978, 18, 1652–1680. [Google Scholar] [CrossRef]
- Fogel, M.B.; Trullinger, S.E.; Bishop, A.R.; Krumhansl, J.A. Classical particlelike behavior of sine-Gordon solitons in scattering potentials and applied fields. Phys. Rev. Lett. 1976, 36, 1411–1414. [Google Scholar] [CrossRef]
- Fogel, M.B.; Trullinger, S.E.; Bishop, A.R.; Krumhansl, J.A. Dynamics of sine-Gordon solitons in the presence of perturbations. Phys. Rev. B 1976, 15, 1578–1592. [Google Scholar] [CrossRef]
- Stratonovich, R.L. Topics in the Theory of Random Noise; Gordon and Breach: New York, NY, USA, 1963. [Google Scholar]
- Gardiner, C. Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th ed.; Springer Series in Synergetics, Vol. 13; Springer: Berlin/Heidelberg, Germany, 2009; p. 447. [Google Scholar]
- Pascual, P.J.; Vazquez, L. Sine-Gordon solitons under weak stochastic perturbations. Phys. Rev. 1985, 322, 8305–8311. [Google Scholar] [CrossRef]
- Frank, T.D. Nonlinear Fokker–Planck Equations. Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2005; p. 408. [Google Scholar]
- McCauley, J.L. A comment on the paper “Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker–Planck equations” by T.D. Frank. Phys. A Stat. Mech. Appl. 2007, 382, 445–452. [Google Scholar] [CrossRef]
- Frank, T.D. Stochastic systems with delay: Perturbation theory for second order statistics. Phys. Lett. A 2016, 380, 1341–1351. [Google Scholar] [CrossRef]
- Wedemann, R.S.; Plastino, A.R.; Tsallis, C. Curl forces and the nonlinear Fokker–Planck equation. Phys. Rev. E 2016, 94, 062105. [Google Scholar] [CrossRef] [PubMed]
- Barbi, M.; Cocco, S.; Peyrard, M. Helicoidal modelfor DNA openong. Phys. Lett. A 1999, 253, 358–369. [Google Scholar] [CrossRef]
- Epstein, O.I. The phenomenon of release activity and the hypothesis of “spatial” homeostasis. Usp. Fiziol. Nauk 2013, 44, 54–76. [Google Scholar] [PubMed]
- Epstein, O.I. Release-activity: A long way from phenomenon to new drugs. Bull. Exp. Biol. Med. 2012, 154, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Gavrilova, E.S.; Bobrovnik, S.A.; Sherriff, G.; Myslivets, A.A.; Tarasov, S.A.; Epstein, O.I. Novel Approach to Activity Evaluation for Release-Active Forms of Anti-Interferon-Gamma Antibodies Based on Enzyme-Linked Immunoassay. PLoS ONE 2014, 9, e97017. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, J.; Gorbunov, E.A.; Tarasov, S.A.; Epstein, O.I. Subetta treatment increases adiponectin secretion by mature human adipocytes in vitro. Int. J. Endocrinol. 2013, 2013, 925874. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, S.A.; Zarubaev, V.V.; Gorbunov, E.A.; Sergeeva, S.A.; Epstein, O.I. Activity of ultra-low doses of antibodies to gamma-interferon against lethal influenza A (H1N1) 2009 virus infection in mice. Antivir. Res. 2012, 93, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Kondo, S.H.; Miura, T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science. 2010, 329, 1616–1620. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, S.H.; Kageyama, R.; Watanabe, D. Systems Biology: The Challenge of Complexity; Springer Science and Business Media: Berlin, Germany, 2009; p. 246. [Google Scholar]
- Othmer, H.G.; Maini, P.K.; Murray, J.D.; North Atlantic Treaty Organization. Experimental and Theoretical Advances in Biological Pattern Formation; Nato Science Series A: (Vol.259); Othmer, H.G., Maini, P.K., Murray, J.D., Eds.; Springer Science and Business Media: Berlin, Germany, 2012; p. 388. [Google Scholar]
- Vanag, V.K.; Epstein, I.R. Pattern formation mechanisms in reaction-diffusion systems. Int. J. Dev. Biol. 2009, 53, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.J.; Meinhardt, H. Biological pattern formation: From basic mechanisms to complex structures. Rev. Mod. Phys. 1994, 66, 1481–1507. [Google Scholar] [CrossRef]
- Gourley, S.A.; Chaplain, M.A.J.; Davidson, F.A. Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dyn. Syst. 2001, 16, 173–192. [Google Scholar] [CrossRef]
- Fisher, R.A. The wave of advance of advantageous genes. Ann. Eugen. 1937, 7, 255–369. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Petrovskii, I.; Piskunov, N. A study of the diffusion equation with increase in the amount of substance and its application to a biology problem. Mosc. Univ. Math. Bull. 1937, 1, 1–16, (Reprinted in Selected Works of A.N. Kolmogorov; Tikhomirov, V.M., Ed.; Kluwer Academic Publishers: London, UK, 1991; Volume I, p. 242). [Google Scholar]
- Lee, C.T.; Hoopes, M.F.; Diehl, J.; Gilliland, W.; Huxel, G.; Leaver, E.V.; McCann, K.; Umbanhowar, J.; Mogilner, A. Non-local concepts and models in biology. J. Theor. Biol. 2001, 210, 201–219. [Google Scholar] [CrossRef] [PubMed]
- Mogilner, A.; Edelstein-Keshet, L. A non-local model for a swarm. J. Math. Biol. 1999, 38, 534–570. [Google Scholar] [CrossRef]
- Fuentes, M.A.; Kuperman, M.N.; Kenkre, V.M. Nonlocal interaction effects on pattern formation in population dynamics. Phys. Rev. Lett. 2003, 91, 158104. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, E.A.; Shapovalov, A.V.; Trifonov, A.Y. Pattern formation in terms of semiclassically limited distribution on lower dimensional manifolds for the nonlocal Fisher–Kolmogorov–Petrovskii–Piskunov equation. J. Phys. A Math. Theor. 2014, 47, 025209. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Iwasa, Y.; Sato, K. Mathematics for Life Science and Medicine; Biological and Medical Physics, Biomedical Engineering Vol. 10; Takeuchi, Y., Iwasa, Y., Sato, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- D’Onofrio, A.; Gandolfi, A. (Eds.) Modeling and Simulation in Science, Engineering and Technology; Springer: Berlin/Heidelberg, Germany, 2014; p. 334. [Google Scholar]
- Marciniak-Czochra, A.; Karch, G.; Suzuki, K. Unstable patterns in reaction–diffusion model of early carcinogenesis. J. Math. Pures Appl. 2013, 99, 509–543. [Google Scholar] [CrossRef]
- Maruvka, Y.E.; Shnerb, N.M. Nonlocal competition and logistic growth: Patterns, defects, and fronts. Phys. Rev. E 2006, 73, 011903. [Google Scholar] [CrossRef] [PubMed]
- Maruvka, Y.E.; Shnerb, N.M. Nonlocal competition and front propagation in branching-coalescence systems. Phys. Rev. E 2007, 75, 042901. [Google Scholar] [CrossRef] [PubMed]
- Vladimirov, V.S. Equations of Mathematical Physics; Dekker: New York, NY, USA, 1971. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapovalov, A.V.; Obukhov, V.V. Some Aspects of Nonlinearity and Self-Organization In Biosystems on Examples of Localized Excitations in the DNA Molecule and Generalized Fisher–KPP Model. Symmetry 2018, 10, 53. https://doi.org/10.3390/sym10030053
Shapovalov AV, Obukhov VV. Some Aspects of Nonlinearity and Self-Organization In Biosystems on Examples of Localized Excitations in the DNA Molecule and Generalized Fisher–KPP Model. Symmetry. 2018; 10(3):53. https://doi.org/10.3390/sym10030053
Chicago/Turabian StyleShapovalov, A. V., and V. V. Obukhov. 2018. "Some Aspects of Nonlinearity and Self-Organization In Biosystems on Examples of Localized Excitations in the DNA Molecule and Generalized Fisher–KPP Model" Symmetry 10, no. 3: 53. https://doi.org/10.3390/sym10030053
APA StyleShapovalov, A. V., & Obukhov, V. V. (2018). Some Aspects of Nonlinearity and Self-Organization In Biosystems on Examples of Localized Excitations in the DNA Molecule and Generalized Fisher–KPP Model. Symmetry, 10(3), 53. https://doi.org/10.3390/sym10030053