Representation by Chebyshev Polynomials for Sums of Finite Products of Chebyshev Polynomials
Abstract
:1. Introduction and Preliminaries
2. Proof of Theorem 1
- (a)
- , where:
- (b)
- , where:
- (c)
- , where:
- (d)
- , where,
- (a)
- (b)
- (c)
- (d)
3. Proofs of Theorems 2 and 3
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Encyclopedia of Mathematics and Its Applications 71; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Beals, R.; Wong, R. Special Functions and Orthogonal Polynomials; Cambridge Studies in Advanced Mathematics 153; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Kim, T.; Kim, D.S.; Jang, G.-W.; Jang, L.C. Fourier series of functions involving higher-order ordered Bell polynomials. Open Math. 2017, 15, 1606–1617. [Google Scholar] [CrossRef] [Green Version]
- Mason, J.C.; Handscomb, D.C. Chebyshev Polynomials; Chapman&Hall/CRC: Boca Raton, FC, USA, 2003. [Google Scholar]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Kwon, J. Representing sums of finite products of chebyshev polynomials of the first kind and lucas polynomials by chebyshev polynomials. Math. Comput. Sci. 2018. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Ryoo, C.S. Representing sums of finite products of Chebyshev polynomials of the third and fourth kinds by Chebyshev polynomials. Symmetry 2018, 10, 258. [Google Scholar] [CrossRef]
- Shang, Y. Unveiling robustness and heterogeneity through percolation triggered by random-link breakdown. Phys. Rev. E 2014, 90, 032820. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y. Effect of link oriented self-healing on resilience of networks. J. Stat. Mech. Theory Exp. 2016, 2016, 083403. [Google Scholar] [CrossRef]
- Shang, Y. Modeling epidemic spread with awareness and heterogeneous transmission rates in networks. J. Biol. Phys. 2013, 39, 489–500. [Google Scholar] [PubMed] [Green Version]
- Agarwal, R.P.; Kim, D.S.; Kim, T.; Kwon, J. Sums of finite products of Bernoulli functions. Adv. Differ. Equ. 2017, 2017, 237. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Kwon, J. Sums of finite products of Chebyshev polynomials of the third and fourth kinds. Adv. Differ. Equ. 2018, 2018, 283. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Park, J.-W. Sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials. J. Inequal. Appl. 2018, 2018, 148. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, D.S.; Dolgy, D.V.; Park, J.-W. Sums of finite products of Legendre and Laguerre polynomials. Adv. Differ. Equ. 2018, 2018, 277. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, G.-W.; Kwon, J. Sums of finite products of Euler functions. In Advances in Real and Complex Analysis with Applications; Trends in Mathematics; Birkhäuser: Basel, Switzerland, 2017; pp. 243–260. [Google Scholar]
- Kim, T.; Kim, D.S.; Jang, L.C.; Jang, G.-W. Sums of finite products of Genocchi functions. Adv. Differ. Equ. 2017, 2017, 268. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D.S.; Jang, L.C.; Jang, G.-W. Fourier series for functions related to Chebyshev polynomials of the first kind and Lucas polynomials. Mathematics 2018, 6, 276. [Google Scholar] [CrossRef]
- Kim, T.; Dolgy, D.V.; Kim, D.S. Representing sums of finite products of Chebyshev polynomials of the second kind and Fibonacci polynomials in terms of Chebyshev polynomials. Adv. Stud. Contemp. Math. 2018, 28, 321–335. [Google Scholar]
- Kim, T.; Kim, D.S.; Kwon, J.; Jang, G.-W. Sums of finite products of Legendre and Laguerre polynomials by Chebyshev polynomials. Adv. Stud. Contemp. Math. 2018, 28, 551–565. [Google Scholar]
- Doha, E.H.; Abd-Elhameed, W.M.; Alsuyuti, M.M. On using third and fourth kinds Chebyshev polynomials for solving the integrated forms of high odd-order linear boundary value problems. J. Egypt. Math. Soc. 2015, 23, 397–405. [Google Scholar] [CrossRef]
- Eslahchi, M.R.; Dehghan, M.; Amani, S. The third and fourth kinds of Chebyshev polynomials and best uniform approximation. Math. Comput. Model. 2012, 55, 1746–1762. [Google Scholar] [CrossRef]
- Mason, J.C. Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms. J. Comput. Appl. Math. 1993, 49, 169–178. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Lee, S.-H. Some identities for Bernoulli polynomials involving Chebyshev polynomials. J. Comput. Anal. Appl. 2014, 16, 172–180. [Google Scholar]
- Kim, D.S.; Dolgy, D.V.; Kim, T.; Rim, S.-H. Identities involving Bernoulli and Euler polynomials arising from Chebyshev polynomials. Proc. Jangjeon Math. Soc. 2012, 15, 361–370. [Google Scholar]
- Zhang, W. Some identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q. 2004, 42, 149–154. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Kim, D.S.; Jang, L.-C.; Dolgy, D.V. Representation by Chebyshev Polynomials for Sums of Finite Products of Chebyshev Polynomials. Symmetry 2018, 10, 742. https://doi.org/10.3390/sym10120742
Kim T, Kim DS, Jang L-C, Dolgy DV. Representation by Chebyshev Polynomials for Sums of Finite Products of Chebyshev Polynomials. Symmetry. 2018; 10(12):742. https://doi.org/10.3390/sym10120742
Chicago/Turabian StyleKim, Taekyun, Dae San Kim, Lee-Chae Jang, and Dmitry V. Dolgy. 2018. "Representation by Chebyshev Polynomials for Sums of Finite Products of Chebyshev Polynomials" Symmetry 10, no. 12: 742. https://doi.org/10.3390/sym10120742